Toggle light / dark theme

The Future Of Fusion? Meet The Stellarator

Can be used for a force field: 3.


Power and energy are essential parts of our everyday life. Every time you turn on a light, you’re using power. If you’re reading this online, you’re using energy. If you’re watching a video — you guessed it — you need energy. So that means that with so many people needing power and energy, we’re brought into a world that’s demanding more and more power. What’s more, getting this power is the hard part.

Global leader in harvesting energy and data from footfall

“Pavegen creates high engagement with citizens by converting their footsteps into energy, data and rewards.

As pedestrians walk across the Pavegen system, the weight from their footsteps compresses electromagnetic generators below, producing 2 to 4 watt seconds of off-grid electrical energy per step.”


Pavegen is a breakthrough smart city technology that creates high engagement with citizens by converting their footsteps into energy, data and rewards.

Laser cooling a nanomechanical oscillator close to its ground state

Researchers at the Swiss Federal Institute of Technology Lausanne (EPFL) and IBM Research Europe recently demonstrated the laser cooling of a nanomechanical oscillator down to its zero-point energy (i.e., the point at which it contains a minimum amount of energy). Their successful demonstration, featured in Physical Review Letters, could have important implications for the development quantum technologies.

Flodesign’s Jet Engine-Inspired Wind Turbine Could Revolutionize Wind Power Technology

We read about different innovations in clean technology almost on a daily basis. A small Massachusetts-based start-up, FloDesign Wind Turbine, has created a wind turbine design based on jet engine technology. This revolutionary wind turbine can generate much more electricity at half the cost than today’s traditional wind turbines. It has also won two clean-energy competitions for its amazing innovation.

A traditional wind turbine can extract just 50% of the available wind energy in the given area it occupies. However, the Wind Jet by FloDesign uses blades covered in shrouds to direct the air through the turbine blades. This results in increased flow of air. As the airflow through the blades increases, the higher the speed of the turbines and ultimately the more power that is generated. The energy generated by this new wind turbine matches that of a traditional turbine with blades that are half the size.

FloDesign boasts that its turbines are 3–4 times more efficient than traditional open-fan turbines and they can be placed much closer together than conventional wind turbines while aligning themselves with the wind like a kite on a string. Not only that, FloDesign wind turbines require much smaller blades which occupy less space, are much easier to manufacture, and easier to ship.

A system for robust and efficient wireless power transfer

Current methods for charging electronic devices via wireless technology only work if the overall system parameters are set up to match a specific transfer distance. As a result, these methods are limited to stationary power transfer applications, which means that a device that is receiving power needs to maintain a specific distance from the source supplying it in order for the power transfer to be successful.

Researchers at Stanford University have recently developed a new technique that could enable more efficient wireless transfer regardless of the distance between a device and its power source. Their paper, published in Nature Electronics, could help to overcome some of the current limitations of existing tools for the wireless charging of elecronic devices.

“The main purpose of our study was to overcome the barrier to dynamic wireless charging,” Sid Assawaworrarit, one of the researchers who carried out the study, told Phys.org. “Our idea is based on parity-time symmetry (PT symmetry), which concerns systems with balanced gain and loss.”

Czinger 21C: the world’s first 3D printed hypercar | Top Gear

The Czinger 21C is a 1,233bhp 3D printed hypercar complete with a turbo V8 revving to 11,000rpm, a 1+1 layout and $1.7m price tag. Oh, and the big news is it’s 3D printed. Well, large sections of the chassis are, paving the way for a revolutionary new car manufacturing process that could change… everything. It’s mind-blowing stuff, so let Jack Rix be your guide around California’s Koenigsegg rival.

WATCH MORE TOP GEAR:
http://bit.ly/TG-S27
http://bit.ly/StigCams
http://bit.ly/TG-Mercedes

MORE ABOUT TOP GEAR:
Want to watch a bit of Top Gear on the internet? Welcome to the most comprehensive collection of official clips you’ll find on YouTube. Whether you’re searching for a caravan challenge, Ken Block in the Hoonicorn, cars versus fighter jets, Stig power laps or the latest Chris Harris Drives, you can find all the iconic films here.

Want to share your views with the team? Join our BBC Studios Voice: https://www.bbcstudiosvoice.com/register

This is a commercial channel from BBC Studios. Service & Feedback https://www.bbcstudios.com/contact/contact-us/