Toggle light / dark theme

Researchers have developed a method to ‘squeeze’ visible light in order to see inside tiny memory devices. The technique will allow researchers to probe how these devices break down and how their performance can be improved for a range of applications.

The team, led by the University of Cambridge, used the technique to investigate the materials used in random access memories, while in operation. The results, reported in the journal Nature Electronics, will allow detailed study of these materials, which are used in devices.

The ability to understand how structural changes characterize the function of these materials, which are used for , ultra-responsive devices called memristors, is important to improve their performance. However, looking inside the 3D nanoscale devices is difficult using traditional techniques.

Circa 2016


Scientists have developed a novel system that recovers energy normally lost in industrial processes.

Each year, energy that equates to billions of barrels of oil is wasted as heat lost from machines and industrial processes. Recovering this energy could reduce energy costs. Scientists from Australia and Malaysia have developed a novel system that is designed to maximize such recovery.

Heat can be converted to electricity by devices called thermoelectric power generators (TEGs), which are made of thermoelectric materials that generate electricity when heat passes through them. Previous studies have attempted to use TEGs to recover energy from the heat generated by, for example, car engines, woodstoves and refrigerators. However, TEGs can only convert a small amount of the heat supplied to them, and the rest is emitted as heat from their “cold” side. No previous studies have attempted to recover energy from the waste heat that has already passed through TEGs. Researchers from Malaysia’s Universiti Teknologi MARA and RMIT University in Australia set out to develop a system that can do this.

The Higgs mode associated with the amplitude fluctuation of an order parameter can decay into other low-energy bosonic modes, which renders the Higgs mode usually unstable in condensed matter systems. Here, the authors propose a mechanism to stabilize the Higgs mode in anisotropic quantum magnets. They show that magnetic anisotropy gaps out the Goldstone magnon mode and stabilizes the Higgs mode near a quantum critical point. The results are supported by three independent approaches: a bond-operator method, field theory, and quantum Monte Carlo simulation with analytic continuation.

The cargo ship of the future is coming.


A wind-powered super sailboat could change how we ship cargo, reducing energy-related carbon emissions in a method still used by 90 percent of manufactured goods. The Wallenius Marine OceanBird can carry 7,000 cars at a time and is powered totally by wind.

🚢 You like badass boats. So do we. Let’s nerd out over them together.

As renewable energy generation grows, so does the need for new storage methods that can be used at times when the Sun isn’t shining or the wind isn’t blowing. A Scottish company called Gravitricity has now broken ground on a demonstrator facility for a creative new system that stores energy in the form of “gravity” by lifting and dropping huge weights.

If you coil a spring, you’re loading it with potential energy, which is released when you let it go. Gravitricity works on the same basic principle, except in this case the springs are 500- to 5,000-tonne weights. When held aloft by powerful cables and winches, these weights store large amounts of potential energy. When that energy is needed, they can be lowered down a mineshaft to spin the winch and feed electricity into the grid.

Gravitricity says that these units could have peak power outputs of between 1 and 20 MW, and function for up to 50 years with no loss of performance. Able to go from zero to full power in under a second, the system can quickly release its power payload in as little as 15 minutes or slow it down to last up to eight hours.