Toggle light / dark theme

Vibration energy harvesting by ferrofluids in external magnetic fields

The development of wearable electronics and the current era of big data requires the sustainable power supply of numerous distributed sensors. In this paper, we designed and experimentally studied an energy harvester based on ferrofluid sloshing. The harvester contains a horizontally positioned cylindrical vial, half-filled with a ferrofluid exposed to a magnetic field. The vial is excited by a laboratory shaker and the induced voltage in a nearby coil is measured under increasing and decreasing shaking rates. Five ferrofluid samples are involved in the study, yielding the dependence of the electromotive force on the ferrofluid magnetization of saturation. The energy harvesting by ferrofluid sloshing is investigated in various magnetic field configurations. It is found that the most effective magnetic field configuration for the energy harvesting is characterized by the field intensity perpendicular to the axis of the vial motion and gravity. The harvested electric power linearly increases with the ferrofluid magnetization of saturation. The electromotive force generated by each ferrofluid is found identical for measurements in acceleration and deceleration mode. A significant reduction in the induced voltage is observed in a stronger magnetic field. The magneto-viscous effect and partial immobilization of the ferrofluid in the stronger magnetic field is considered. The magneto-viscous effect is documented by a supplementing experiment. The results extend knowledge on energy harvesting by ferrofluid sloshing and may pave the way to applications of ferrofluid energy harvesters for mechanical excitations with changing directions in regard to the magnetic field induction.


Rajnak, M., Kurimsky, J., Paulovicova, K. et al. Vibration energy harvesting by ferrofluids in external magnetic fields. Sci Rep 15, 26,701 (2025). https://doi.org/10.1038/s41598-025-12490-w.

Download citation.

Ultrathin metallic films show tunable, directional charge flow using light at room temperature

In a major step toward next-generation electronics, researchers at the University of Minnesota Twin Cities have discovered a way to manipulate the direction of charge flow in ultrathin metallic films at room temperature using light. This discovery opens the door to more energy-efficient optical sensors, detectors, and quantum information devices.

The research is published in Science Advances.

The team showed that ultra-thin layers of ruthenium dioxide (RuO2), grown on (TiO2), can be made to behave differently depending on direction—both in how they respond to light and how electricity moves through them.

China boosts lithium battery life, efficiency using boron additives

Lithium batteries get extended efficiency, life using electrolytes with boron additives.


Scientists from China have confirmed that electrolytes with boron additives can tackle the major challenges of lithium metal batteries.

Energy storage devices that use lithium metal as an anode have exhibited an energy density of over 500 Wh/kg. However, a research team from China’s Nankai University claimed that the practical application of lithium metal batteries (LMBs) is still severely limited by issues such as lithium dendrite formation, short cycle life, and low Coulombic efficiency of Li plating/stripping.

Additive Manufacturing Enables Advanced Thermal Control Systems for Next-Generation Space Missions

3D Systems is collaborating with researchers from Penn State University and Arizona State University on two projects sponsored by NASA intended to enable groundbreaking alternatives to current thermal management solutions.

Severe temperature fluctuations in space can damage sensitive spacecraft components, resulting in mission failure. By combining deep applications expertise with 3D Systems’ leading additive manufacturing solutions comprising Direct Metal Printing (DMP) technology and tailored materials and Oqton’s 3DXpert® software, the teams are engineering sophisticated thermal management solutions for the demands of next-generation satellites and space exploration.

The project led by researchers with Penn State University, Arizona State University, and the NASA Glenn Research Center in collaboration with 3D Systems’ Application Innovation Group (AIG) has resulted in processes to build embedded high-temperature passive heat pipes in heat rejection radiators that are additively manufactured in titanium. These heat pipe radiators are 50 percent lighter per area with increased operating temperatures compared with current state-of-the-art radiators, allowing them to radiate heat more efficiently for high-power systems.


By combining deep applications expertise with 3D Systems’ leading additive manufacturing solutions, research teams are engineering sophisticated thermal management solutions for the demands of next-generation satellites and space exploration.

Researchers develop flexible fiber material for self-powered health-monitoring sensors

Could clothing monitor a person’s health in real time, because the clothing itself would be a self-powered sensor? A new material created through electrospinning, which is a process that draws out fibers using electricity, brings this possibility one step closer.

A team led by researchers at Penn State has developed a new fabrication approach that optimizes the internal structure of electrospun fibers to improve their performance in electronic applications. The team has published its findings in the Journal of Applied Physics.

This novel electrospinning approach could open the door to more efficient, flexible and scalable electronics for wearable sensors, health monitoring and sustainable energy harvesting, according to Guanchun Rui, a visiting postdoctoral student in the Department of Electrical Engineering and the Materials Research Institute and co-lead author of the study.

Nearly three-quarters of solar and wind projects are being built in China

China is rapidly scaling up its solar and wind energy infrastructure, accounting for nearly three-quarters of all utility-scale projects currently under construction worldwide, according to a new report from the Global Energy Monitor (GEM). With 510 gigawatts (GW) already under construction and a total pipeline of over 1.3 terawatts (TW), China is consolidating its position as a dominant force in the global energy transition.

This acceleration follows years of sustained growth. As of early 2025, China’s operating solar and wind capacity has reached 1.4 TW—equivalent to 44% of the global total and more than the combined capacity of the European Union, United States, and India. In the first quarter of this year, wind and solar supplied 22.5% of the country’s electricity, overtaking thermal power capacity for the first time.

The majority of China’s new capacity is coming from centralized utility-scale projects, particularly in northern and western regions such as Xinjiang and Inner Mongolia, which host nearly 40% of the country’s planned solar and wind capacity. In 2024 alone, China added 278 GW of solar and 46 GW of wind.

/* */