Toggle light / dark theme

Also read: india creates world’s first DC electric train engine with regenerative braking, promises rs 25 lakh saving per train.

Dubbed Infinity Train, it works by using gravitational energy created on the downhill sections of the rail network to recharge its battery power and eliminate the need for recharging on the return leg of the journey.

The train will allow for a capital-efficient solution for removing diesel and pollutants from Fortescue’s rail operations. It will also help remove the need for the generation of renewable energy as well as the setting up of expensive charging infrastructure.

US airlines have begun to scale back the number of flights they are offering to customers, citing the skyrocketing cost of fuel that has been exacerbated by the Russian invasion of Ukraine.

Alaska Air said it will reduce its offerings by as much as 5% in the first half of this year citing “the sharp rise in fuel costs.” Allegiant Airlines will cut flights by somewhere between 5% and 10% in the second quarter, the company’s chief financial officer said.

Allegiant’s financial chief said the company plans to scale back its flight schedule primarily during times of weaker demand. His comments were reported by Bloomberg News.

Canada’s major oil sands producers are working together on a first-of-its-kind net-zero initiative that could help ensure long-term, secure supplies of affordable and responsible energy for North America.

Together, Canadian Natural, Cenovus Energy, ConocoPhillips Canada, Imperial, MEG Energy, and Suncor Energy have formed the Oil Sands Pathways to Net-Zero Alliance.

The goal of the Alliance is to achieve a phased reduction in emissions from oil sands operations, reaching net-zero by 2050, working in collaboration with Canadian federal and provincial governments.

An analysis of radioactive chemicals in ice cores indicates one of the most powerful solar storms ever hit Earth around 7,176 B.C.


(Inside Science) — For a few nights more than 9,000 years ago, at a time when many of our ancestors were wearing animal skins, the northern skies would have been bright with flickering lights.

Telltale chemical isotopes in ancient ice cores suggest one of the most massive solar storms ever took place around 7,176 B.C., and it would have been noticed.

“We know that most high-energy events are accompanied by geomagnetic storms,” said Raimund Muscheler, a professor of geology at Sweden’s Lund University. “So it’s likely that there were visible auroras.”

Hydrogen is already a key component of chemical industrial processes and in the steel industry. So making clean hydrogen to use in those industrial processes is critical to reducing carbon emissions, says Jake Stones at market research firm Independent Commodity Intelligence Services (ICIS).

But as an energy source itself, hydrogen’s big advantage is its versatility according to Sunita Satyapal, who oversees hydrogen fuel cell technology for the Department of Energy.

“It’s often called the Swiss Army knife of energy,” she says.

There is an exciting branch of battery research that involves combining the strength and durability of next-generation materials with their energy storage potential. This could see car panels double as their batteries, for example, and in a new example of what this could look like scientists have developed a “power suit” for electric vehicles that could not only extend their range, but give them a handy boost in acceleration at the same time.

Sometimes known as structural batteries, we’ve seen some interesting recent advances in this space from research groups and even big-name automakers. Back in 2013, Volvo demonstrated carbon fiber body panels with energy storage potential, and we’ve seen other teams show off similar concepts since. These projects sought to combine the high energy density of batteries with the ultra-fast discharge rates of supercapacitors, in materials strong enough to serve as a car’s exterior.

This new breakthrough continues this line of thinking, with scientists at University of Central Florida and NASA designing a new material featuring unique properties that allow for not just impressive energy storage potential, but also the strength needed to endure a car crash.

The world’s first demonstration device to produce 1,000 tons of gasoline per year from carbon dioxide (CO2) hydrogenation has completed its technology evaluation and trial operation.

Located in the Zoucheng Industrial Park, Shandong province, China, the project has been jointly developed by the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) and the Zhuhai Futian Energy Technology company. The hydrogenation of CO2 into liquid fuels and chemicals can not only realize the resource utilization of CO2 but also facilitate the storage and transportation of renewable energy.

However, activation and selective conversion of CO2 are challenging. A technology that can selectively produce energy-dense, value-added hydrocarbon fuels will provide a new route to promote the clean, low-carbon energy revolution.

In the endless quest to pack more energy into batteries without increasing their weight or volume, one especially promising technology is the solid-state battery. In these batteries, the usual liquid electrolyte that carries charges back and forth between the electrodes is replaced with a solid electrolyte layer. Such batteries could potentially not only deliver twice as much energy for their size, they also could virtually eliminate the fire hazard associated with today’s lithium-ion batteries.

But one thing has held back : Instabilities at the boundary between the solid electrolyte layer and the two electrodes on either side can dramatically shorten the lifetime of such batteries. Some studies have used special coatings to improve the bonding between the layers, but this adds the expense of extra coating steps in the fabrication process. Now, a team of researchers at MIT and Brookhaven National Laboratory have come up with a way of achieving results that equal or surpass the durability of the coated surfaces, but with no need for any coatings.

The new method simply requires eliminating any carbon dioxide present during a critical manufacturing step, called sintering, where the battery materials are heated to create bonding between the cathode and electrolyte layers, which are made of ceramic compounds. Even though the amount of carbon dioxide present is vanishingly small in air, measured in parts per million, its effects turn out to be dramatic and detrimental. Carrying out the sintering step in pure oxygen creates bonds that match the performance of the best coated surfaces, without that extra cost of the coating, the researchers say.

Europe’s natural gas shortage, which has pushed prices to multi-year highs, has revived talk of the EastMed pipeline – a Mediterranean Sea pipeline that could carry gas from Israel to European customers, Chevron Chief Executive Michael Wirth said on Monday at the CERAWeek energy conference.

Wirth downplayed concerns over global oil supplies amid the ongoing Russia-Ukraine war and the subsequent potential for an energy crisis.

The EastMed pipeline, meant to transfer natural gas from Israeli waters to Europe via Greece and Cyprus, was announced in 2016, and several agreements have been signed between the three countries on the subject. The three states aimed to complete the €6 billion project by 2025, but no financing has been secured for it.