Toggle light / dark theme

DARPA is making Nikola Tesla’s dream of wireless energy a reality

“First of all, the environment has changed, and the need for more resilient energy transport methods for military operations is at a premium,” explained Col. Paul “Promo” Calhoun to Popular Mechanics in an exclusive interview. American forces operate globally like the special operations units he resupplied as a C-17 cargo pilot, from outposts in the South China Sea to the Iraqi desert. Since there is no simple way to power them, many forces use their radars, anti-drone microwave weapons, lasers, or other energy-intensive equipment. And with each passing year, the severity of the issue increases.

Superconductors to enable next-generation transit, energy transmission, and storage

~UserGI15994093/iStock.

The concept proposed by the team not only promises to reduce the operating cost of each system but also devise a way to store and transport liquified hydrogen, which is widely considered to be one of the primary sources of clean energy in the future. “The liquified hydrogen would be used to cool the superconductor guideway as it is stored and transported, reducing the need for a separate specialized pipeline system capable of cooling the fuel to 20 degrees Kelvin, or minus 424 Fahrenheit,” said a media release.

Quantum mechanics gives us power, but no answers

The quest to understand quantum mechanics has led to remarkable technological advancements, granting us power and control over the natural world. However, despite these successes, the paradoxes and mysteries surrounding the theory continue to challenge our understanding of reality. This raises the question of whether science, particularly quantum mechanics, provides us with true comprehension of the world or merely equips us with power without deeper understanding, writes John Horgan.

MIT’s Tiny Terahertz Receiver Preserves IoT Battery Life

Researchers demonstrate a low-power “wake-up” receiver one-tenth the size of other devices.

MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

Vast Potential — Researchers Create a New Type of Laser

Researchers from EPFL and IBM have created a novel laser that could revolutionize optical ranging technology. This laser is constructed from lithium niobate, a material frequently utilized in optical modulators to regulate the frequency or intensity of light transmitted through a device.

Lithium niobate is highly valued for its ability to manage large amounts of optical power and its high “Pockels coefficient.” This allows the material to alter its optical properties when an electric field is applied to it.

The researchers achieved their breakthrough by combining lithium niobate with silicon nitride, which allowed them to produce a new type of hybrid integrated tunable laser. To do this, the team manufactured integrated circuits for light (“photonic integrated circuits”) based on silicon nitride at EPFL, and then bonded them with lithium niobate wafers at IBM.

Two massive gravity batteries are nearing completion in the US and China

The system helps to plug the gap when it comes to renewable energy sources.

As a solution to the unpredictable nature of renewable energy sources like solar and wind power, gravity batteries are being pitched as an ideal remedy. To further this cause, Swiss startup Energy Vault is now completing two such units, which are situated near Shanghai in China and Texas in the United States.

The basic idea behind a gravity battery system is to lift a heavy object, such as a large mass of concrete or a weight, on a pulley, using energy from a power source. When energy is needed, the thing can fall, and the potential energy is converted back into electricity.

/* */