Toggle light / dark theme

New patterns in sun’s layers could help scientists solve solar mystery

Astronomers are one step closer to understanding one of the most enduring solar mysteries, having captured unprecedented data from the sun’s magnetic field.

The groundbreaking data collected from the US National Science Foundation’s (NSF) Daniel K Inouye Solar Telescope (DKIST) in Hawaii—the most powerful solar telescope in the world—has provided the most detailed representations to date of the magnetic field of the so-called ‘quiet’ surface of the sun.

An international team of scientists, including researchers from the University of Sheffield, believe the data has implications for how we model between the layers of the sun. The research has been published in Astrophysical Journal Letters.

Thought experiments and conservation laws: Reevaluating quantum conservation principles

Conservation laws are central to our understanding of the universe, and now scientists have expanded our understanding of these laws in quantum mechanics.

A conservation law in physics describes the preservation of certain quantities or properties in isolated physical systems over time, such as mass-energy, momentum, and electric charge.

Conservation laws are fundamental to our understanding of the universe because they define the processes that can or cannot occur in nature. For example, the conservation of momentum reveals that within a closed system, the sum of all momenta remains unchanged before and after an event, such as a collision.

Revolutionizing Wireless Power: Scientists Achieve Breakthrough in Long-Distance Charging Efficiency

Engineers at Aalto University have developed an improved method for long-distance wireless charging. By enhancing the interaction between transmitting and receiving antennas and leveraging the “radiation suppression” phenomenon, they’ve deepened our theoretical understanding of wireless power transfer beyond the traditional inductive methods, a significant advancement in the field.

Charging over short distances, such as through induction pads, uses magnetic near fields to transfer power with high efficiency, but at longer distances the efficiency dramatically drops. New research shows that this high efficiency can be sustained over long distances by suppressing the radiation resistance of the loop antennas that are sending and receiving power.

Cybersecurity Builds Trust in Critical Infrastructure

Where reliability matters, as it does in energy, resilience against cyberattacks enhances a company’s reputation. Disruptions damage that reputation.


In 2021, a ransomware attack shut down Colonial Pipeline operations for six days. Gas shortages in the eastern US, economic turmoil, and eye-catching headlines resulted. Interest in cybersecurity for critical infrastructure intensified — and many leaders seemed to learn the wrong lesson.

Energy sector leaders often take cyber vulnerabilities seriously only after a significant breach. Experiencing a loss (or watching someone else’s) makes companies tighten cybersecurity to avoid similar losses. This pattern emphasizes the loss-avoidance aspects of cybersecurity. Yet thinking of cybersecurity solely as loss avoidance misses a key value generator cybersecurity provides: trust.

Companies that get cybersecurity right earn trust. That trust matters in two ways: It supports brand or company reputation, and it allows for forward innovation.

A New Condenser Can Harvest Drinking Water from the Air 24/7

Global warming has severely impacted the supply of fresh water in many parts of the world. Coastal communities have resorted to salination plants while those in the far interior have no option but to extract water from the air. Most of these techniques are energy-intensive or only work under certain conditions. Now, a new technology developed by researchers at ETH Zurich can help humanity access fresh water 24 hours a day and without spending any energy.

The technology might not look so sophisticated at first, and one might just say that it’s just another regular glass pane. But only the researchers who developed it will tell you that this glass pane is coated with special polymers and silver layers that give the glass properties to reflect solar radiation and also emit heat directly into outer space.

Raytheon to build revolutionary rotating detonation engine for DARPA

DARPA has contracted Raytheon to develop a practical version of a revolutionary air-breathing rotating detonation engine called Gambit, which would have no moving parts and could lead to lighter missiles with longer ranges at lower cost.

Gas turbines are remarkable power plants that have made possible modern air travel and many weapon systems, but they suffer from a number of disadvantages. They are complex machines that are heavy, have many moving parts that are costly to assemble and maintain, and they require exotic materials and special processing to handle the tremendous temperatures they operate at.

It’s bad enough when such an engine is installed in an aircraft, but when it’s part of a throwaway weapon like a cruise missile, this not only limits the payload, it runs into some serious money.

Don’t worry about global population collapse

The world’s massive human population is leveling off.

Most projections show we’ll hit peak humanity in the 21st century, as people choose to have smaller families and women gain power over their own reproduction. This is great news for the future of our species.

And yet alarms are sounding. While environmentalists have long warned of a planet with too many people, now some economists are warning of a future with too few. For example, economist Dean Spears from the University of Texas has written that an “unprecedented decline” in population will lead to a bleak future of slower economic growth and less innovation.

Mysterious Pulsar Burst Unleashes The Most Energetic Photons Ever Seen

Pulsars are known for their regularity and stability. These fast-rotating neutron stars emit radio waves with such consistent pulses that astronomers can use them as a kind of cosmic clock.

But recently a pulsar emitted gamma rays with tremendous energy. The gamma rays were the most energetic photons ever observed, with energies of more than 20 teraelectronvolts, and astronomers are struggling to understand how that’s possible.

The results were published in Nature Astronomy, which describes the burst of gamma rays emanating from the Vela Pulsar.

/* */