Hydrogen power!
The first flight of a hydrogen-powered airplane was a success this week, showing zero-emissions air travel could be on the horizon.
Hydrogen power!
The first flight of a hydrogen-powered airplane was a success this week, showing zero-emissions air travel could be on the horizon.
To figure out the origin of life might take a conceptual shift towards seeing it as a pattern of molecular energy by Tim Requarth + BIO.
And yet the scientific consensus is that 1.5℃ is the real upper limit we can risk. Beyond that, dangerous tipping points could spell even more frequent disasters.
Luckily, the IMO will revise its strategy this July. I and many others expect far more ambition—because zero shipping emissions by 2050 is a necessity to keep the 1.5℃ limit credible. That gives us less than three decades to clean up an industry whose ships have an average life of 25 years. The 2050 timeline conceals that our carbon budget will likely run out far more quickly—requiring urgent action for all sectors, including shipping.
Research has confirmed the potential of wind propulsion. The maths is simple. Shipping accounts for one billion tons of carbon dioxide a year, almost three percent of global greenhouse gas emissions. If wind propulsion saves fossil fuels today, the dwindling carbon budget stretches a little further. This, in turn, buys more time to develop alternative fuels, which most ships will need to some extent. Once these fuels are widely available, we’ll need less of them because the wind can provide anything from 10 percent to 90 percent of the power a ship needs.
Posted in energy
“folkways and beliefs must be brought low, that Power may substitute for their influence its own authority and build its church on their ruins”. — Bertrand de Jouvenel.
Read my article https://medium.com/@tsverava_62020/rural-culture-and-its-dis…d1317dd541
face_with_colon_three year 2022.
It’s all in the power of kinetic energy. Oh, and batteries.
Sharpshooters eliminate up to 300 times their body weight in liquid waste each day, and save energy through a phenomenon called superpropulsion.
A diamond sphere made in Germany was key to December’s breakthrough fusion experiment in California.
Physicists in West Virginia have announced a potential breakthrough that could help upend a longstanding constraint imposed by the first law of thermodynamics.
The discovery, involving how energy is converted in plasmas in space, was described in new research published in the journal Physical Review Letters, and could potentially require scientists to have to rethink how plasmas are heated both in the lab and in space.
The first law of thermodynamics, an expression of the law of conservation of energy albeit styled with relation to thermodynamic processes, conveys that the total energy within a system will remain constant, but that it can be converted from one form of energy into another. More simply, the idea is commonly expressed as “energy can neither be created or destroyed.”
Chaotic behavior is typically known from large systems: for example, from weather, from asteroids in space that are simultaneously attracted by several large celestial bodies, or from swinging pendulums that are coupled together. On the atomic scale, however, one does normally not encounter chaos—other effects predominate.
Now, for the first time, scientists at TU Wien have been able to detect clear indications of chaos on the nanometer scale—in chemical reactions on tiny rhodium crystals. The results have been published in the journal Nature Communications.
The chemical reaction studied is actually quite simple: with the help of a precious metal catalyst, oxygen reacts with hydrogen to form water, which is also the basic principle of a fuel cell. The reaction rate depends on external conditions (pressure, temperature). Under certain conditions, however, this reaction shows oscillating behavior, even though the external conditions are constant.
Recently, a research team led by Prof. Guo Guangcan from the University of Science and Technology of China (USTC) constructed a non-Hermiticity (NH) synthetic orbital angular momentum (OAM) dimension in a degenerate optical cavity and observed the exceptional points (EPs). This study was published in Science Advances.
In topological physics, the NH systems depict open systems with complex energy spectra. Exceptional points are one of the unique features of NH systems. To study EPs, the team had constructed synthetic one-dimensional lattices and established topological simulation platform in a degenerate optical cavity. Based on this platform, an additional pseudomomentum was introduced as a parameter to construct the Dirac point in the two-dimensional momentum space. A pair of EPs can be obtained by introducing non-Hermitian perturbation around the Dirac point.
The detection of complex energy spectra in NH systems can be troublesome for traditional means. The research group developed a method which is referred to as wave front angle–resolved band structure spectroscopy to investigate complex energy spectra based on synthetic OAM. Using this method, the team not only detected EPs in momentum space, but also the key features of EPs like bulk Fermi arcs, parity-time symmetry-breaking transition, energy swapping and half-integer band windings.