Toggle light / dark theme

The CRYSTALS-Kyber public-key encryption and key encapsulation mechanism recommended by NIST in July 2022 for post-quantum cryptography has been broken. Researchers from the KTH Royal Institute of Technology, Stockholm, Sweden, used recursive training AI combined with side channel attacks.

A side-channel attack exploits measurable information obtained from a device running the target implementation via channels such as timing or power consumption. The revolutionary aspect of the research (PDF) was to apply deep learning analysis to side-channel differential analysis.

“Deep learning-based side-channel attacks,” say the researchers, “can overcome conventional countermeasures such as masking, shuffling, random delays insertion, constant-weight encoding, code polymorphism, and randomized clock.”

In a new breakthrough, researchers at the University of Copenhagen, in collaboration with Ruhr University Bochum, have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This, in turn, opens new doors for companies and others to exploit the technology commercially.

Going from one to two is a minor feat in most contexts. But in the world of quantum physics, doing so is crucial. For years, researchers around the world have strived to develop stable quantum light sources and achieve the phenomenon known as quantum mechanical entanglement – a phenomenon, with nearly sci-fi-like properties, where two light sources can affect each other instantly and potentially across large geographic distances. Entanglement is the very basis of quantum networks and central to the development of an efficient quantum computer.

Researchers from the Niels Bohr Institute published a new result in the highly esteemed journal Science, in which they succeeded in doing just that. According to Professor Peter Lodahl, one of the researchers behind the result, it is a crucial step in the effort to take the development of quantum technology to the next level and to “quantize” society’s computers, encryption, and the internet.

A second problem is the risk of technological job loss. This is not a new worry; people have been complaining about it since the loom, and the arguments surrounding it have become stylized: critics are Luddites who hate progress. Whither the chandlers, the lamplighters, the hansom cabbies? When technology closes one door, it opens another, and the flow of human energy and talent is simply redirected. As Joseph Schumpeter famously said, it is all just part of the creative destruction of capitalism. Even the looming prospect of self-driving trucks putting 3.5 million US truck drivers out of a job is business as usual. Unemployed truckers can just learn to code instead, right?

Those familiar replies make sense only if there are always things left for people to do, jobs that can’t be automated or done by computers. Now AI is coming for the knowledge economy as well, and the domain of humans-only jobs is dwindling absolutely, not merely morphing into something new. The truckers can learn to code, and when AI takes that over, coders can… do something or other. On the other hand, while technological unemployment may be long-term, its problematicity might be short-term. If our AI future is genuinely as unpredictable and as revolutionary as I suspect, then even the sort of economic system we will have in that future is unknown.

A third problem is the threat of student dishonesty. During a conversation about GPT-3, a math professor told me “welcome to my world.” Mathematicians have long fought a losing battle against tools like Photomath, which allows students to snap a photo of their homework and then instantly solves it for them, showing all the needed steps. Now AI has come for the humanities and indeed for everyone. I have seen many university faculty insist that AI surely could not respond to their hyper-specific writing prompts, or assert that at best an AI could only write a barely passing paper, or appeal to this or that software that claims to spot AI products. Other researchers are trying to develop encrypted watermarks to identify AI output. All of this desperate optimism smacks of nothing more than the first stage of grief: denial.

In a new approach to security that unites technology and art, EPFL researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.

Cryptography is something of a new field for Olivier Martin, who has been studying the optics of nanostructures for many years as head of the Nanophotonics and Metrology Lab EPFL’s School of Engineering. But after developing some new silver nanostructures in collaboration with the Center of MicroNanoTechnology, Martin and Ph.D. student Hsiang-Chu Wang noticed that these nanostructures reacted to in an unexpected way, which just happened to be perfect for encoding information.

They found that when polarized light was shone through the nanostructures from certain directions, a range of vivid and easily-identifiable colors was reflected back. These different colors could be assigned numbers, which could then be used to represent letters using the standard code ASCII (American Standard Code for Information Interchange). To encode a secret message, the researchers applied a quaternary code using the digits 0, 1, 2 and 3 (as opposed to the more commonly used 0 and 1). The result was a series of four-digit strings composed of different color combinations that could be used to spell out a message, and the method of chromo-encryption was born.

He is trying to influence the witness, alleged prosecutors.

Prosecutors of the FTX trial in the U.S. have asked the court to tighten the norms of the bail given to former CEO Sam Bankman-Fried (SBF) and bar him from using the encrypted messaging app Signal, The New York Times.


David Dee Delgado/Getty.

Although Bankman-Fried has pleaded not guilty to the charges levied against him, prosecutors state that he was well aware of the transactions that were taking place at the crypto exchange, which led to a sharp liquidity crunch and later its downfall. Billions of investor money have been lost and prosecutors claim that Bankman-Fried directed top brass at the company to hide liabilities worth $8 billion.

After years of delay under government pressure, Apple said Wednesday that it will offer fully encrypted backups of photos, chat histories and most other sensitive user data in its cloud storage system worldwide, putting them out of reach of most hackers, spies and law enforcement.

Maybe a New iPhone is a good idea for a second phone.


The one service Apple offered that could not be encrypted was iCloud. Now that will change.

Tech giants from Google to Amazon and Alibaba —not to mention nation-states vying for technological supremacy—are racing to dominate this space. The global quantum-computing industry is projected to grow from $412 million in 2020 to $8.6 billion in 2027, according to an International Data Corp. analysis.

Whereas traditional computers rely on binary “bits”—switches either on or off, denoted as 1s and 0s—to process information, the “qubits” that underpin quantum computing are tiny subatomic particles that can exist in some percentage of both states simultaneously, rather like a coin spinning in midair. This leap from dual to multivariate processing exponentially boosts computing power. Complex problems that currently take the most powerful supercomputer several years could potentially be solved in seconds. Future quantum computers could open hitherto unfathomable frontiers in mathematics and science, helping to solve existential challenges like climate change and food security. A flurry of recent breakthroughs and government investment means we now sit on the cusp of a quantum revolution. “I believe we will do more in the next five years in quantum innovation than we did in the last 30,” says Gambetta.

But any disrupter comes with risks, and quantum has become a national-security migraine. Its problem-solving capacity will soon render all existing cryptography obsolete, jeopardizing communications, financial transactions, and even military defenses. “People describe quantum as a new space race,” says Dan O’Shea, operations manager for Inside Quantum Technology, an industry publication. In October, U.S. President Joe Biden toured IBM’s quantum data center in Poughkeepsie, N.Y., calling quantum “vital to our economy and equally important to our national security.” In this new era of great-power competition, China and the U.S. are particularly hell-bent on conquering the technology lest they lose vital ground. “This technology is going to be the next industrial revolution,” says Tony Uttley, president and COO for Quantinuum, a Colorado-based firm that offers commercial quantum applications. “It’s like the beginning of the internet, or the beginning of classical computing.”

Whether we realize it or not, cryptography is the fundamental building block on which our digital lives are based. Without sufficient cryptography and the inherent trust that it engenders, every aspect of the digital human condition we know and rely on today would never have come to fruition much less continue to evolve at its current staggering pace. The internet, digital signatures, critical infrastructure, financial systems and even the remote work that helped the world limp along during the recent global pandemic all rely on one critical assumption – that the current encryption employed today is unbreakable by even the most powerful computers in existence. But what if that assumption was not only challenged but realistically compromised?

This is exactly what happened when Peter Shor proposed his algorithm in 1995, dubbed Shor’s Algorithm. The key to unlocking the encryption on which today’s digital security relies is in finding the prime factors of large integers. While factoring is relatively simple with small integers that have only a few digits, factoring integers that have thousands of digits or more is another matter altogether. Shor proposed a polynomial-time quantum algorithm to solve this factoring problem. I’ll leave it to the more qualified mathematicians to explain the theory behind this algorithm but suffice it to say that when coupled with a quantum computer, Shor’s Algorithm drastically reduces the time it would take to factor these larger integers by multiple orders of magnitude.

Prior to Shor’s Algorithm, for example, the most powerful computer today would take millions of years to find the prime factors of a 2048-bit composite integer. Without Shor’s algorithm, even quantum computers would take such an inordinate amount of time to accomplish the task as to render it unusable by bad actors. With Shor’s Algorithm, this same factoring can potentially be accomplished in a matter of hours.

Check out all the on-demand sessions from the Intelligent Security Summit here.

For years, encryption has played a core role in securing enterprise data. However, as quantum computers become more advanced, traditional encryption solutions and public-key cryptography (PKC) standards, which enterprise and consumer vendors rely on to secure their products, are at serious risk of decryption.

Today, IBM Institute for Business Value issued a new report titled Security in the Quantum Era, examining the reality of quantum risk and the need for enterprise adoption of quantum-safe capabilities to safeguard the integrity of critical applications and infrastructure as the risk of decryption increases.

Making predictions is never easy, but it is agreed that cryptography will be altered by the advent of quantum computers.

Thirteen, 53, and 433. That’s the size of quantum computers.


Hh5800/iStock.

In fact, the problems used for cryptography are so complex for our present algorithms and computers that the information exchange remains secure for any practical purposes – solving the problem and then hacking the protocol would take a ridiculous number of years. The most paradigmatic example of this approach is the RSA protocol (for its inventors Ron Rivest, Adi Shamir, and Leonard Adleman), which today secures our information transmissions.