Toggle light / dark theme

The miniaturization of spectrometers to a submillimeter-scale footprint opens opportunities for applications in hyperspectral imaging and lab-on-a-chip systems. Here, the authors report a high-performance single-pixel photodetector spectrometer based on the III-V semiconductor p-graded-n junction, featuring a voltage-tunable optical response.

Briahna Joy Gray and Robby Soave discuss a new report on credibility in academic papers. #science #research.

About Rising:
Rising is a weekday morning show with bipartisan hosts that breaks the mold of morning TV by taking viewers inside the halls of Washington power like never before. The show leans into the day’s political cycle with cutting edge analysis from DC insiders who can predict what is going to happen. It also sets the day’s political agenda by breaking exclusive news with a team of scoop-driven reporters and demanding answers during interviews with the country’s most important political newsmakers.

Follow Rising on social media:

Website: Hill. TV

Facebook: facebook.com/HillTVLive/

Instagram: @HillTVLive.

The continuous improvement of circuits and electronic components is vital for the development of new technologies with enhanced capabilities and unique characteristics. In recent years, most electronics engineers have been specifically focusing on reducing the size of transistors, while retaining a low power consumption.

Researchers at University of Science and Technology Beijing recently introduced a new pseudo-CMOS architecture based on self-biased molybdenum disulfide transistors. This architecture, outlined in Nature Electronics, could be used to create highly performing inverters, gate circuits, and other device components.

“The development of integrated circuits (ICs) for efficient computing with low power is a global hot topic and a focus of international competition in cutting-edge fields,” Zheng Zhang, co-author of the paper, told Tech Xplore.

Tardigrades are often considered the most endearing invertebrates, akin to the capybara of their realm, yet their significance surpasses mere charm.


This year, researchers from Harvard Medical School, the University of North Carolina at Chapel Hill, and Marshall University in Huntington, West Virginia, discovered that when the tardigrades are under stress, their bodies produce unstable free radicals of oxygen and an unpaired electron.

When the amino acid cysteine, which is used in protein production, comes into contact with these oxygen-free radicals, it becomes oxidized, triggering a signal that tells the tardigrade when it’s time to enter into the tun. When the researchers prevented the free radicals from reacting with cysteine, the tardigrades couldn’t enter tun, meaning the cysteine is likely a key to all tardigrades’ survival strategies.

Study co-author Leslie Hicks told New Scientist that, “Cysteine acts like a kind of regulatory sensor. It allows tardigrades to feel their environment and react to stress.”

Roughly 1 in 2 wearers of ventricular assist devices are diagnosed with an infection. The reason for this is the thick cable for the power supply. ETH Zurich researchers have now developed a solution to mitigate this problem.

For many patients waiting for a , the only way to live a decent life is with the help of a pump attached directly to their heart. This pump requires about as much power as a TV, which it draws from an external battery via a seven-millimeter-thick cable. The system is handy and reliable, but it has one big flaw: Despite , the point at which the cable exits the abdomen can be breached by bacteria.

ETH Zurich researcher and engineer Andreas Kourouklis is working to soon make this problem a thing of the past. With the support of ETH Zurich Professor Edoardo Mazza and physicians from the German Heart Center in Berlin, Kourouklis has developed a new cable system for heart pumps that doesn’t cause infections. The findings are published in the journal Biomaterials Advances.