Toggle light / dark theme

Diodes, also known as rectifiers, are a basic component of modern electronics. As we work to create smaller, more powerful and more energy-efficient electronic devices, reducing the size of diodes is a major objective. Recently, a research team from the University of Georgia developed the world’s smallest diode using a single DNA molecule. This diode is so small that it cannot be seen by conventional microscopes.

A diode is an electrical device that allows current to move through it in one direction much more easily than the other. No diode prevents 100% of current flow in one direction while allowing unlimited current in the other direction—in reality, a diode will always allow some current in both the “forward” and “backward” directions. The larger the imbalance favoring the “forward” direction, however, the better diode we have. Diodes are responsible for controlling the current in many common electronic components. Millions of diodes are embedded in a single silicon chip, and to increase the processing power of these chips, the diodes need to be made smaller.

Following a prediction originally made in 1965 by Intel co-founder Gordon Moore, now known as Moore’s law, scientists and engineers have been able to make smaller and smaller computer hardware by doubling the number of electronic components in a silicon chip every 18 months. These improvements in computing power are approaching the physical limits of silicon, however; when silicon components are too small, they will become unstable and their performance unpredictable.

Researchers at Weill Cornell Medicine have discovered a protein called SEL1L that plays a critical role in clearing collagen from tissue, and that may be a therapeutic target to help prevent fibrosis, scar tissue that interferes with organ function. The paper, published on Feb. 20 in Nature Communications, provides clues that could lead to drug development for diseases like lung fibrosis which have no therapeutic options currently.

A system designed at MIT could allow sensors to operate in remote settings, without batteries.

MIT researchers have developed a battery-free, self-powered sensor that can harvest energy from its environment.

Because it requires no battery that must be recharged or replaced, and because it requires no special wiring, such a sensor could be embedded in a hard-to-reach place, like inside the inner workings of a ship’s engine. There, it could automatically gather data on the machine’s power consumption and operations for long periods of time.

A NIMS research team has developed the world’s first n-channel diamond MOSFET (metal-oxide-semiconductor field-effect transistor). The developed n-channel diamond MOSFET provides a key step toward CMOS (complementary metal-oxide-semiconductor: one of the most popular technologies in the computer chip) integrated circuits for harsh-environment-applications as well as the development of diamond power electronics.

This research was published in Advanced Science (“High-temperature and high-electron mobility metal-oxide-semiconductor field-effect transistors based on n-type diamond”).

World’s First N-Channel Diamond Field-Effect Transistor: (Left) Atomic force microscope image of diamond epilayer surface morphology. (Middle) Optical microscope image of the diamond MOSFET. (Right) Performance of the MOSFET measured at 300 °C. The drain current increased when the gate voltage (Vg) was increased from −20 V (indicated by a black line) to 10 V (indicated by a yellow line). (Image: NIMS)

White Rabbit (WR) is a technology developed at CERN, in collaboration with institutes and companies, to synchronise devices in the accelerators down to sub-nanoseconds and solve the challenge of establishing a common notion of time across a network. Indeed, at a scale of billionths of a second, the time light takes to travel through a fibre-optic cable and the time the electronics take to process the signal are no longer negligible. To avoid potential delays, the co-inventors of White Rabbit designed a new ethernet switch.

First used in 2012, the application of this fully open-source technology has quickly expanded outside the field of particle physics. In 2020, it was included in the worldwide industry standard known as Precision Time Protocol (PTP), governed by the Institute of Electrical and Electronics Engineers (IEEE).

What’s more, CERN recently launched the White Rabbit Collaboration, a membership-based global community whose objective is to maintain a high-performance open-source technology that meets the needs of users and to facilitate its uptake by industry. The WR Collaboration will provide dedicated support and training, facilitate R&D projects between entities with common interests and complementary expertise and establish a testing ecosystem fostering trust in products that incorporate the open-source technology. At CERN, the WR Collaboration Bureau – a dedicated team composed of senior White Rabbit engineers and a community coordinator – will facilitate the day-to-day running of the Collaboration’s activities and support its members.

Small, shelled, and unassuming, chitons have eyes unlike any other creature in the animal kingdom.

Some of these marine mollusks have thousands of bulbous little peepers embedded in their segmented shells, all with lenses made of a mineral called aragonite. Although tiny and primitive, these sensory organs called ocelli are thought to be capable of true vision, distinguishing shapes as well as light.

Other chiton species, however, sport smaller ‘eyespots’ that function more like individual pixels, much like the components of an insect’s or mantis shrimp’s compound eye, forming a visual sensor distributed over the chiton’s shell.