Toggle light / dark theme

The BBC speaks to residents and travellers in some of the top-ranked countries on the 2024 Global Innovation Index to find out how cutting-edge technology benefits day-to-day life.

With the rise of AI, self-driving cars and wi-fi connected appliances, it can feel like innovation is everywhere these days. But certain countries are known for developing cutting-edge technologies that benefit residents and visitors alike.

To dive into those countries making the most impact in these areas, the World Intellectual Property Organisation recently released its 2024 Global Innovation Index, ranking 130 economies based on measures like their education system, technology infrastructure and knowledge creation (like patents filed or mobile apps created).

In today’s world, the fight against counterfeiting is more critical than ever. Counterfeiting affects about 3% of global trade, posing significant risks to the economy and public safety. From fake pharmaceuticals to counterfeit currency, the need for secure and reliable authentication methods is paramount. Authentication labels are commonly used—such as holograms on bank notes and passports—but there is always a need for new unfalsifiable technologies.

This is where research recently published in Applied Sciences comes into play. Led by a team of scientists from Oxford University, the University of Southampton, and Diamond Light Source, the UK’s national synchrotron, the work focuses on developing a new technology for writing and reading covert information on labels.

This technology leverages the unique properties of Ge2Sb2Te5 thin films, which can change their structure when exposed to specific types of laser light. By using circularly or linearly polarized laser light, the researchers can encode hidden information in these thin films. This information can then be revealed using a simple reading device, making the technology both advanced and accessible.

🚀 Q: How will Jared Isaacman’s background influence NASA’s future direction? A: Isaacman’s experience as a business leader, philanthropist, pilot, and astronaut will drive NASA towards a bold era of space economy development, focusing on groundbreaking achievements in space science, technology, and exploration.

🌠 Q: What is Isaacman’s vision for NASA’s mission? A: He aims to pursue a thriving space economy, transforming humanity into a space-faring civilization with breakthroughs in manufacturing, biotechnology, mining, and potentially new energy sources.

Froilan Mendoza is Founder & Chief Technology Officer of Fulcrum Solutions.

Small businesses are the backbone of the U.S. economy. They represent 99.9% of all businesses in the country, account for 43.5% of GDP and employ almost half of the U.S. workforce. Yet small business owners have always had to overcome obstacles to survive and succeed. Lack of capital is responsible for 38% of small business failures. Labor costs make up 70% of their expenses, and a national labor shortage of 2 million workers is exacerbating the difficulty of hiring and keeping talent.

The good news is that AI is leveling the playing field for small businesses, giving them easy-to-use tools to optimize their processes and scale their organizations without huge teams or budgets. A 2024 study from the U.S. Chamber of Commerce found that 98% of small businesses are already using an AI-enabled tool, and 91% of owners say that AI will fuel future business growth. The use of generative AI tools, such as chatbots and image creators, grew by 40% in the last year.

It was a moment three years in the making, based on intensive research and design work: On Sept. 5, for the first time, a large high-temperature superconducting electromagnet was ramped up to a field strength of 20 tesla, the most powerful magnetic field of its kind ever created on Earth.


The next step will be building SPARC, a smaller-scale version of the planned ARC power plant. The successful operation of SPARC will demonstrate that a full-scale commercial fusion power plant is practical, clearing the way for rapid design and construction of that pioneering device can then proceed full speed.

Zuber says that “I now am genuinely optimistic that SPARC can achieve net positive energy, based on the demonstrated performance of the magnets. The next step is to scale up, to build an actual power plant. There are still many challenges ahead, not the least of which is developing a design that allows for reliable, sustained operation. And realizing that the goal here is commercialization, another major challenge will be economic. How do you design these power plants so it will be cost effective to build and deploy them?”

Someday in a hoped-for future, when there may be thousands of fusion plants powering clean electric grids around the world, Zuber says, “I think we’re going to look back and think about how we got there, and I think the demonstration of the magnet technology, for me, is the time when I believed that, wow, we can really do this.”

The Expedition 72 crew studied micro-algae and DNA-like nanomaterials on Tuesday to improve health in space and on Earth. The orbital residents also worked on cargo transfers and lab maintenance aboard the International Space Station.

NASA Flight Engineer Nick Hague began his day processing radiation-resistant samples of Arthrospira C micro-algae and stowing them in an incubator for analysis. The samples will be exposed to different light intensities to observe how they affect the micro-algae’s cell growth and oxygen production. Results may advance the development of spacecraft life support systems and fresh food production in space.

Afterward, Hague joined Commander Suni Williams of NASA for a different research session mixing water with samples of messenger RNA, or mRNA, and protein to create DNA-like nanomaterial products inside the Kibo laboratory module’s Life Science Glovebox. Flight Engineer Butch Wilmore then transferred the samples, exposed them to ultrasonic waves, and imaged them with a spectrophotometer to measure the intensity of light at different wavelengths and evaluate the quality of the nanomaterials. The samples will also be returned to Earth for further evaluation. Results may lead to improved therapies for Earth and space health conditions as well as advance the space economy.

A team of cybersecurity researchers at Stony Brook University has uncovered a new way for scammers to steal from unsuspecting cryptocurrency users. They have posted a paper to the arXiv preprint server describing the new crypto scam and how users can protect themselves.

Cryptocurrency is a type of digital currency run on a secure online platform. One example is Coinbase. Crypto currency is stored in a crypto wallet. In this new study, the team in New York reports that scammers have found a way to get people to redirect crypto payments away from intended recipients and toward wallets held by the scammers.

The researchers call the scam typosquatting. It involves setting up Blockchain Naming Systems (BNS) that are similar to those used by well-known entities. It exploits the use of simple word-based addresses rather than the complicated and hard-to-remember letter and digit codes commonly associated with crypto wallets.

Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat into electricity via light. Using an unconventional approach inspired by quantum physics, Rice engineer Gururaj Naik and his team have designed a thermal emitter that can deliver high efficiencies within practical design parameters.

The research could inform the development of thermal-energy electrical storage, which holds promise as an affordable, grid-scale alternative to batteries. More broadly, efficient TPV technologies could facilitate renewable energy growth—an essential component of the transition to a net-zero world. Another major benefit of better TPV systems is recouping from industrial processes, making them more sustainable. To put this in context, up to 20–50% of the heat used to transform raw materials into consumer goods ends up being wasted, costing the United States economy over $200 billion annually.

TPV systems involve two main components: photovoltaic (PV) cells that convert light into electricity and thermal emitters that turn heat into light. Both of these components have to work well in order for the system to be efficient, but efforts to optimize them have focused more on the PV cell.

Artificial intelligence holds the potential to bring a commercial and economic rebirth for the United States and its allies. Yet the U.S. Congress is getting skittish. Its leaders are reportedly negotiating a lame-duck bill to regulate the AI industry.

As officials push and prod on the new technology, they should exercise caution.