Toggle light / dark theme

This remarkable miniature rotorcraft is so lightweight and efficient that it can lift its own mass given nothing but sunlight. The entire thing weighs about as much as four paperclips, and it can fly all day if the sun’s shining.

Researchers at China’s Beihang University and the Center of Advanced Aero-Engine, have unveiled CouloumbFly, a palm-sized miniature rotorcraft that weighs just 4.21 g (0.15 oz) – yet still boasts a rotor diameter of 20 cm (7.9 in), making it around 600 times lighter than any other comparable small solar-powered drone.

In tethered testing under natural sunlight conditions, CouloumbFly got itself airborne within a second and managed an hour of flight without power diminishing, before a mechanical failure brought it back down. Not much of a big deal if it was a glide-capable winged drone – but this is a miniature helicopter that’s entirely responsible for generating its own lift, and managing that on solar energy alone is an extraordinary feat.

What happens when humanity begins living in space, building larger space stations, and creating a purely space based economy. Space drones will deliver goods between stations, farming stations will grow food, and space hotels will host celestial events and viewing parties for eclipses and welcoming parties for spaceships returning from Mars.

This sci-fi documentary takes a look at the future of space stations and space technology, starting with the retiring of the International Space Station, and ending with the construction of the largest rotating ring world space station, with its own atmosphere and lakes that evaporate creating clouds and rain.

Other topics in this video include: stealth based technology and metamaterials, the future of Starship Mark 2, cryo refuelling in space, Moon space stations, the Mars Colony, asteroid mining station, future space telescope stations, design concepts, and cryo sleep.

PATREON

AI will enable drone wingmen to make autonomous decisions without centralized command.


According to Airbus, FCAS will be centered around a core Next Generation Weapon System (NGWS). In this “system of systems,” piloted New Generation Fighters will work together with Unmanned Remote Carriers – all connected to other systems in space, in the air, on the ground, at sea and in cyberspace via a data cloud called the “Combat Cloud.”

The FCAS is one more step towards the goal of achieving full collaborative combat by 2040, which can replace military systems like Rafale and Eurofighter.

After creating the world’s first self-organizing drone flock, researchers at Eötvös Loránd University (ELTE), Budapest, Hungary have now also demonstrated the first large-scale autonomous drone traffic solution. This fascinating new system is capable of far more than what could be executed with human pilots.

The staff of the Department of Biological Physics at Eötvös University has been working on group robotics and swarms since 2009. In 2014, they created the world’s first autonomous quadcopter flock consisting of at least ten units. The research group has now reached a new milestone by publishing the dense autonomous traffic of one hundred drones in the journal Swarm Intelligence.

But what is the difference between flocking and autonomous drone traffic?

Quantum Systems, the Munich-based manufacturer of dual-use reconnaissance drones that use multi-sensor technology to collect data for government agencies and commercial users, confirms for the first time the deployment of a previously unreleased AI sensor upgrade of the type “Receptor AI” in Ukraine. The new upgrade kit is based on a Jetson Orin Nvidia chip and several sensors for the Vector reconnaissance drone. The further development enables optical navigation during the day and at night and in poor visibility conditions, as well as automated AI-supported object recognition and identification. In times of electronic warfare, navigation is the biggest challenge for the use of drones.

“We are implementing the upgrade without any weight changes and with the same range. We are designing these adaptations without fundamental changes to the existing platform architecture,” says Daniel Kneifel, Director of Software Engineering at Quantum Systems.

“We are demonstrating that AI does not have to be an abstract topic, but offers tangible benefits in use. For Quantum Systems, the combination of hardware and software is crucial to being able to offer market-leading solutions in the field of aerial intelligence,” says Sven Kruck, CRO and Managing Director, Quantum Systems.

A University of Maryland spinoff firm, Wave Engine Corporation, has created a simpler, more affordable jet propulsion system for drones.

The digitally controlled modern-day pulsejet engine features no moving parts and claims to offer major improvements in the cost reduction and rapid production of future jet-powered aircraft.

In March, the Baltimore-based company demonstrated the full flight capability of its J-1 engine on an Unmanned Aerial Vehicle (UAV).

Northrop Grumman has released a photo of the Series Hybrid Electric Propulsion AiRcraft Demonstration (SHEPARD) XRQ-73 stealth drone X-plane that it has built for DARPA and is expected to fly by the end of the year.

Part of DARPA’s X-Prime program, the XRQ-73A is a demonstrator prototype built by Northrop Grumman and Scaled Composites. The flying wing design is based on the Air Force Research Laboratory (AFRL) Great Horned Owl (GHO), an Intelligence Advanced Research Projects Activity (IARPA) program, which used a blended wing design and external ducted push propellers.

In contrast, the XRQ-73A is larger and stealthier. With a wingspan of well over 30 ft (9 m), it weighs in at 1,250 lb (567 kg) and can reach speeds of 250 kn (287 mph, 463 km/h) at an altitude of 18,000 ft (5,500 m) with a payload of 400 lb (180 kg).

In early 2023, following an international conference that included dialogue with China, the United States released a “Political Declaration on Responsible Military Use of Artificial Intelligence and Autonomy,” urging states to adopt sensible policies that include ensuring ultimate human control over nuclear weapons. Yet the notion of “human control” itself is hazier than it might seem. If humans authorized a future AI system to “stop an incoming nuclear attack,” how much discretion should it have over how to do so? The challenge is that an AI general enough to successfully thwart such an attack could also be used for offensive purposes.

We need to recognize the fact that AI technologies are inherently dual-use. This is true even of systems already deployed. For instance, the very same drone that delivers medication to a hospital that is inaccessible by road during a rainy season could later carry an explosive to that same hospital. Keep in mind that military operations have for more than a decade been using drones so precise that they can send a missile through a particular window that is literally on the other side of the earth from its operators.

We also have to think through whether we would really want our side to observe a lethal autonomous weapons (LAW) ban if hostile military forces are not doing so. What if an enemy nation sent an AI-controlled contingent of advanced war machines to threaten your security? Wouldn’t you want your side to have an even more intelligent capability to defeat them and keep you safe? This is the primary reason that the “Campaign to Stop Killer Robots” has failed to gain major traction. As of 2024, all major military powers have declined to endorse the campaign, with the notable exception of China, which did so in 2018 but later clarified that it supported a ban on only use, not development—although even this is likely more for strategic and political reasons than moral ones, as autonomous weapons used by the United States and its allies could disadvantage Beijing militarily.