O primeiro totalmente reconfigurável e programável módulo de computador qu ntico.
Joint Quantum Institute http://goo.gl/dc6z4a
O primeiro totalmente reconfigurável e programável módulo de computador qu ntico.
Joint Quantum Institute http://goo.gl/dc6z4a
Interesting and true on many situations; and will only expand as we progress in areas of AI, QC, and Singularity as well.
The use of algorithms to filter and present information online is increasingly shaping our everyday experience of the real world, a study published by Information, Communication & Society argues.
Associate Professor Michele Willson of Curtin University, Perth, Australia looked at particular examples of computer algorithms and the questions they raise about personal agency, changing world views and our complex relationship with technologies.
Algorithms are central to how information and communication are located, retrieved and presented online, for example in Twitter follow recommendations, Facebook newsfeeds and suggested Google map directions. However, they are not objective instructions but assume certain parameters and values, and are in constant flux, with changes made by both humans and machines.
I see many uses for this such as provider services including front office & hospital admissions, security in assessing people in line or trying to gain entry, etc.
Machines are taking over more and more tasks. Ideally, they should also be capable to support the human in case of poor performance. To intervene appropriately, the machine should understand what is going on with the human. Fraunhofer scientists have developed a diagnostic tool that recognizes user states in real time and communicates them to the machine.
The camera firmly focuses on the driver’s eyes. If they are closed for more than one second, an alarm is triggered. This technique prevents the dangerous micro-sleep at the wheel. “It is not always as easy for a machine to detect what state the human is in, as it is in this case,” says Jessica Schwarz from the Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE in Wachtberg, just south of Bonn.
Holistic model feeds real-time diagnosis
For her doctoral thesis, the graduate psychologist examined the question of how to very precisely determine user states, what influence these may have on incorrect behavior and how automated systems can use this information. “For complex applications it is not sufficient to focus on only one impact factor,” says the scientist. An increased heart rate, for example, does not automatically mean that a person is stressed. This can have various causes. Schwarz therefore examined what factors specifically impact human performance and created a holistic model that provides a detailed view on user states and their causes.
A single photon can excite two or more atoms at the same time, scientists found. And the light particle would do so in a very counterintuitive way, by summoning one or more companion photons out of nothingness.
If you think of particles of light, or photons, as billiard balls, it makes intuitive sense that a single photon can excite a single atom.
The new, less intuitive finding depends on the strange nature of quantum mechanics, and might help improve advanced machines known as quantum computers, researchers said. Prior work suggested that such machines could simultaneously perform more calculations in one instant than there are atoms in the universe. [Warped Physics: 10 Effects of Faster-than-Light Travel].
More on the new most powerful QC at USC.
Following a recent upgrade, the USC-Lockheed Martin Quantum Computing Center (QCC) based at the USC Information Sciences Institute (ISI) with 1098 qubits, is now the leader in qubit capacity…
USC Viterbi School of Engineering Amy Blumenthal, 917.710.1897 [email protected]
Excellent write up on a paper submitted to the International Association for Cryptologic Research, by a group of UK and Belgian researchers are offering up a dig-sig scheme to assist in the addressing of Digital signatures (one of the fundamental parts of cryptography) in a post-quantum world. Expect the heat to rise on QC security as China’s launch date nears for the new Quantum Satellite.
Boffins smokin’ idea to share parts of keys to cook quantum-proof crypto.
Nice.
When we think of synthetic biology, we often think of engineering a cell to give it some useful function. But SEED 2016 had quite a few speakers working outside of a biological cell. Some broke open cells to utilize just the cellular machinery to create “cell-free” systems. Others showed what could be done inside of the computer (in silico) to improve our understanding and prediction of synthetic gene networks. Here, we’re highlighting SEED speakers who showed how both of these approaches can advance synthetic biology.
Cell-free synthetic biology
Roy Bar-Ziv gave the first keynote at SEED 2016. His group at the Weissman Institute has made tremendous progress toward using cell-free expression that can mimic the behavior of real cells. Over the last 12 years they developed their ‘artificial cells’ using microfluidics and DNA arrayed on 2D substrates as DNA brushes. Each spot of DNA can be programmed the same as DNA in cells, and unlike other cell-free expression setups the microfluidics allows for dynamics.