Menu

Blog

Archive for the ‘computing’ category: Page 75

May 25, 2024

Physicists Uncover Unusual New Quantum State Known As “Dirac Spin Liquid”

Posted by in categories: computing, particle physics, quantum physics

Researchers at the University of Hong Kong discovered Dirac spinons in the material YCu3-Br, providing evidence of a quantum spin liquid state and potentially advancing applications in quantum computing and high-temperature superconductivity.

Quasiparticles are fascinating entities that arise from collective behavior within materials and can be treated as a group of particles. Specifically, Dirac spinons are anticipated to exhibit unique characteristics similar to Dirac particles in high-energy physics and Dirac electrons in graphene and quantum moiré materials, such as a linear dispersion relation between energy and momentum. However, spin-½ charge-neutral quasiparticles had not been observed in quantum magnets until this work.

‘“To find Dirac spinons in quantum magnets has been the dream of generations of condensed matter physicists; now that we have seen the evidence of them, one can start to think about the countless potential applications of such highly entangled quantum material. Who knows, maybe one-day people will build quantum computers with it, just as people have been doing in the past half-century with silicon,’” said Professor Meng, HKU physicist and one of the corresponding authors of the paper.

May 25, 2024

Researchers identify best algorithms to optimize performance of functionally graded materials

Posted by in categories: computing, engineering, information science

A study from Japan published in the International Journal of Computer Aided Engineering and Technology reveals a way to optimize the composition of functionally graded materials (FGMs). FGMs are advanced composite materials with a gradual variation in composition and properties across their volume, designed to optimize performance under specific loading conditions.

May 25, 2024

Brain-inspired chip integrates trainable neurons for ultra-efficient computing

Posted by in categories: computing, neuroscience

Researchers create fully memristive neuromorphic chip integrating trainable dendritic neurons and high-density RRAM, enabling energy-efficient brain-inspired computing architectures.

May 25, 2024

Printed organic transistors achieve record performance and 3D circuit density

Posted by in category: computing

Researchers printed high-performance organic transistor arrays and logic circuits with an amorphous polymer semiconductor, achieving 100% yield, excellent uniformity, and the highest reported density of 100 printed transistors per square centimeter.

May 25, 2024

More than spins: Exploring uncharted territory in quantum devices

Posted by in categories: computing, particle physics, quantum physics

Many of today’s quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the ‘0’ and the ‘1’. However, unlike classical bits, qubits can exist in superpositions, meaning they can simultaneously be in a combination of the ‘0’ and ‘1’ states. Spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations.

In a new publication in Physical Review Letters (“Fast quantum state preparation and bath dynamics using non-Gaussian variational Ansatz and quantum optimal control”), researchers in Amsterdam demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.

Quantum devices use the quirky behaviour of quantum particles to perform tasks that go beyond what ‘classical’ machines can do, including quantum computing, simulation, quantum sensing, quantum communication and quantum metrology. These devices can take many forms, such as a collection of superconducting circuits, or a lattice of atoms or ions held in place by lasers or electric fields.

May 24, 2024

Cloud Computing under the Cover of Quantum

Posted by in categories: business, computing, quantum physics

A secure method for cloud-based quantum computing harnesses the power of quantum physics to keep data confidential.

Progress in quantum technology has been swift, but we still are far from the day when everyone will have a quantum computer in their house or at their business. The early stages of quantum computing will likely rely on a quantum version of the “cloud,” where users send data and computing tasks to a state-of-the-art quantum machine hosted by Google, IBM, or another company. But is that approach secure? It can be, thanks to the impenetrable secrecy of quantum-based protocols. A recent experiment demonstrates a version of “blind quantum computing” using trapped ions [1]. The protocol is scalable, meaning it offers potential to be incorporated into larger and larger quantum computing systems.

Quantum computers have the potential to be game changers in computationally intensive tasks such as drug discovery and material design. In these highly competitive sectors, there would be concerns about using a cloud-based quantum computer. “A company searching for a new wonder drug or for a high-performance battery material wouldn’t want to reveal confidential secrets,” explains Peter Drmota of the University of Oxford. However, it has been shown—in theory—that one can perform computations on a remote quantum computer while hiding the data and the operations done on such data. “Blind quantum computing could give a client confidence to use whoever’s quantum computer,” Drmota says.

May 24, 2024

Researchers describe spin-boson systems to configure quantum devices

Posted by in categories: computing, particle physics, quantum physics

In a new publication in Physical Review Letters, researchers in Amsterdam demonstrate a way to describe spin-boson systems and use this to efficiently configure in a desired state.

Quantum devices use the quirky behavior of quantum particles to perform tasks that go beyond what “classical” machines can do, including quantum computing, simulation, sensing, communication and metrology. These devices can take many forms, such as a collection of superconducting circuits, or a lattice of atoms or ions held in place by lasers or electric fields.

Regardless of their physical realization, quantum devices are typically described in simplified terms as a collection of interacting two-level or spins. However, these spins also interact with other things in their surroundings, such as light in superconducting circuits or oscillations in the lattice of atoms or ions. Particles of light (photons) and vibrational modes of a lattice (phonons) are examples of bosons.

May 24, 2024

Fresh Data From the Cosmos: NASA’s Voyager 1 Resumes Sending Science Data From 15 Billion Miles Away

Posted by in categories: computing, science

Voyager 1, after overcoming a computer issue, has resumed sending scientific data from two of its instruments, with plans to recalibrate the remaining two soon. This marks significant progress in restoring the spacecraft, which is over 15 billion miles from Earth and requires over 22 hours for communications to travel one way.

NASA ’s Voyager 1 has resumed returning science data from two of its four instruments for the first time since November 2023, when a computer issue arose with the spacecraft. The mission’s science instrument teams are now determining steps to recalibrate the remaining two instruments, which will likely occur in the coming weeks. The achievement marks significant progress toward restoring the spacecraft to normal operations.

Progress in Troubleshooting.

May 24, 2024

Ultra-Thin Crystals Unlock New Possibilities in Electronics and Quantum Computing

Posted by in categories: computing, quantum physics

In a study published in Nature Materials, scientists from the University of California, Irvine describe a new method to make very thin crystals of the element bismuth – a process that may aid in making the manufacturing of cheap flexible electronics an everyday reality.

“Bismuth has fascinated scientists for over a hundred years due to its low melting point and unique electronic properties,” said Javier Sanchez-Yamagishi, assistant professor of physics & astronomy at UC Irvine and a co-author of the study. “We developed a new method to make very thin crystals of materials such as bismuth, and in the process reveal hidden electronic behaviors of the metal’s surfaces.”

The bismuth sheets the team made are only a few nanometers thick. Sanchez-Yamagishi explained how theorists have predicted that bismuth contains special electronic states allowing it to become magnetic when electricity flows through it – something essential for quantum electronic devices based on the magnetic spin of electrons.

May 23, 2024

The world’s largest chipmaker could flip a kill switch and remotely disable its machines in the event of an invasion

Posted by in category: computing

I found this on NewsBreak:


TSMC is the world’s largest chipmaker, and it produces a massive percentage of the world’s advanced computer chips—by some estimates over the past few years, even around 90%. What happens if something were to happen in that part of the world to disturb this chipmaking ability? It’d be catastrophic, of course, but TSMC and its main machine supplier, Dutch company ASML, say the machines wouldn’t fall into hostile hands.

Citing people close to the matter, Bloomberg reports both TSMC and ASML have ways to disable the lithographic machines located in Taiwan. This kill switch would be able to be remotely activated, should such a drastic action ever be required.

Continue reading “The world’s largest chipmaker could flip a kill switch and remotely disable its machines in the event of an invasion” »

Page 75 of 865First7273747576777879Last