Toggle light / dark theme

When Einstein Walked with Gödel

Parul Sehgal of The New York Times stated “In these pieces, plucked from the last 20 years, Holt takes on infinity and the infinitesimal, the illusion of time, the birth of eugenics, the so-called new atheism, smartphones and distraction. It is an elegant history of recent ideas. There are a few historical correctives — he dismantles the notion that Ada Lovelace, the daughter of Lord Byron, was the first computer programmer. But he generally prefers to perch in the middle of a muddle — say, the string theory wars — and hear evidence from both sides without rushing to adjudication. The essays orbit around three chief concerns: How do we conceive of the world (metaphysics), how do we know what we know (epistemology) and how do we conduct ourselves (ethics)”. [ 6 ]

Steven Poole of The Wall Street Journal commented “…this collection of previously published essays by Jim Holt, who is one of the very best modern science writers”. [ 7 ]

[ edit ].

The Most Memorable Overclocking-Friendly CPUs

Enthusiasts have been pushing the limits of silicon for as long as microprocessors have existed. Early overclocking endeavors involved soldering and replacing crystal clock oscillators, but that practice quickly evolved into adjusting system bus speeds using motherboard DIP switches and jumpers.

Internal clock multipliers were eventually introduced, but it didn’t take long for those to be locked down, as unscrupulous sellers began removing official frequency ratings and rebranding chips with their own faster markings. System buses and dividers became the primary tuning tools for most users, while ultra-enthusiasts went further – physically altering electrical specifications through hard modding.

Eventually, unlocked multipliers made a comeback, ushering in an era defined by BIOS-level overclocking and increasingly sophisticated software tuning tools. Over the past decade, however, traditional overclocking has become more constrained. Improved factory binning, aggressive turbo boost algorithms, and thermal ceilings mean that modern CPUs often operate near their peak potential right out of the box.

Proving quantum computers have the edge

Quantum computers promise to outperform today’s traditional computers in many areas of science, including chemistry, physics, and cryptography, but proving they will be superior has been challenging. The most well-known problem in which quantum computers are expected to have the edge, a trait physicists call “quantum advantage,” involves factoring large numbers, a hard math problem that lies at the root of securing digital information.

In 1994, Caltech alumnus Peter Shor (BS ‘81), then at Bell Labs, developed a that would easily factor a large number in just seconds, whereas this type of problem could take a classical computer millions of years. Ultimately, when quantum computers are ready and working—a goal that researchers say may still be a decade or more away—these machines will be able to quickly factor large numbers behind cryptography schemes.

But, besides Shor’s algorithm, researchers have had a hard time coming up with problems where quantum computers will have a proven advantage. Now, reporting in a recent Nature Physics study titled “Local minima in ,” a Caltech-led team of researchers has identified a common physics problem that these futuristic machines would excel at solving. The problem has to do with simulating how materials cool down to their lowest-energy states.

Superconductivity Traverses a Single Molecule Bridge

A single molecule provides a controllable connection between a normal metal and a superconductor.

Researchers have caused a material’s superconductivity to permeate into a nearby normal metal via a single molecule [1]. They showed that this effect could be controlled and say that this control could allow the creation of so-called Majorana quasiparticles, which many research teams are exploring as future quantum bits (qubits) for quantum computers.

The spread of superconductivity into a normal metal in contact with a superconductor has been studied for decades. These experiments are typically done with thin films of the materials. However, the microscopic mechanism underpinning the effect—a normal-to-super-current conversion known as Andreev reflection—can be hard to control, and control is essential for applications of the effect.

Controlling quantum particle states through structural phase transition of crystals

A research team has successfully fine-tuned the Rabi oscillation of polaritons, quantum composite particles, by leveraging changes in electrical properties induced by crystal structure transformation. Published in Advanced Science, this study demonstrates that the properties of quantum particles can be controlled without the need for complex external devices, which is expected to greatly enhance the feasibility of practical quantum technology. The team was led by Professor Chang-Hee Cho from the Department of Physics and Chemistry at DGIST.

Quantum technology enables much faster and more precise information processing than conventional electronic devices and is gaining attention as a key driver of future industries, including quantum computing, communications, and sensors. At the core of this technology lies the ability to accurately generate and control quantum states. In particular, recent research has been actively exploring light-based quantum devices, with polaritons at the center of this field.

Polaritons are composite quasiparticles formed through the hybridization of photons and excitons—bound states arising from the motion of electrons. These quasiparticles travel at the speed of light while retaining the ability to interact with other particles, much like electrons.

Driven to succeed: Physicists explore a new way to control quasiparticles

For the better part of a century, the quantum objects known as quasiparticles have been all dressed up with nowhere to go. But that may change, now that a Yale-led team of physicists has shown it is possible to exert a greater level of control over at least one type of quasiparticle.

The discovery upends decades of fundamental science and may have wide applications for quantum-related research in the years ahead.

A is an “emergent” quantum object—a central, core particle surrounded by other particles that, together, demonstrate properties not found in each individual component. Quasiparticles have become the central conceptual picture by which scientists try to understand interacting quantum systems, including those that may be used in computing, sensors, and other devices.

/* */