Toggle light / dark theme

Beyond the crystal: Dynamic model captures loop flexibility in swine virus drug design

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to devastate the global swine industry, yet the structural basis of how small molecules block its entry into host cells remains unclear. Researchers at the University of Tsukuba and Mahidol University developed a refined model of the PRRSV receptor domain CD163-SRCR5 using state-of-the-art computational approaches, offering new avenues for rational drug design.

While traditional drug discovery often relies on static crystal structures, many biologically important proteins, including the scavenger receptor CD163-SRCR5, contain flexible loop regions poorly captured by crystallography. These loops are critical for recognizing and , making them challenging yet attractive drug targets.

In their new study published in The Journal of Physical Chemistry Letters, the researchers used (MD) simulations, ensemble docking, and fragment molecular orbital calculations to generate a dynamic, physiologically relevant structural model of the CD163-SRCR5 domain.

High-performance memory devices can dissolve in water to address e-waste problem

The use of electronics in various forms is on the rise, from wearable devices like smartwatches to implantable devices like body-implanted sensors, skin-worn smart patches, and disposable monitoring devices. These devices, which are inevitably discarded after use, contribute to the growing problem of electronic waste (e-waste), a significant environmental concern.

The Korea Institute of Science and Technology (KIST) has announced that a joint research team, led by Dr. Sangho Cho of the Center for Extreme Materials Research and Dr. Yongho Joo of the Center for Functional Composite Materials Research, has developed a that offers high-performance data storage while completely degrading within days when immersed in water. The research is published in the journal Angewandte Chemie International Edition.

The material is biocompatible and stable enough for implantation in the human body, and the onset of degradation can be controlled by adjusting the thickness and the composition of the protective layer. Once this protective layer dissolves, the material degrades naturally in water within approximately three days, without leaving any residue.

Turning tap water into hydrogen: New strategy lets PEM electrolyzers use impure water

In recent years, energy engineers have been working on a wide range of technologies that could help to generate and store electrical power more sustainably. These include electrolyzers, devices that could use electricity sourced via photovoltaics, wind turbines or other energy technologies to split water (H2O) into hydrogen (H2) and oxygen (O2), via a process known as electrolysis.

The hydrogen produced by electrolyzers could in turn be used in fuel cells, devices that convert the chemical energy in hydrogen into electricity without combustion and could be used to power trucks, buses, forklifts and various other heavy vehicles, or could provide back-up power for hospitals, data centers and other facilities.

Many recently designed electrolyzers prompt the splitting of water into hydrogen using a (PEM), a membrane that selectively allows protons (H+) to pass through, while blocking gases.

Nanometer thin spacer boosts blue OLEDs portability and efficiency

Organic light-emitting diodes (OLEDs) have transformed display and lighting technology with their vivid colors, deep contrast, and energy efficiency. As demand grows for lighter, thinner, and more energy-saving devices—especially in wearables, foldables, and portable electronics—there’s increasing interest in OLEDs that can operate at lower voltages without compromising performance.

Magnetic chains on superconductors: New heterostructure design advances quantum technology

Magnetic-superconducting hybrid systems are key to unlocking topological superconductivity, a state that could host Majorana modes with potential applications in fault-tolerant quantum computing. However, creating stable, controllable interfaces between magnetic and superconducting materials remains a challenge.

Traditional systems often struggle with lattice mismatches, complex interfacial interactions, and disorder, which can obscure the signatures of topological states or mimic them with trivial phenomena. Achieving over at the atomic scale has been a long-standing challenge in this field.

Published in Materials Futures, the researchers developed a novel sub-monolayer CrTe2/NbSe2 heterostructure. By carefully depositing Cr and Te on NbSe2 substrate, they observed a two-stage growth process: an initial compressed Cr-Te layer forms with a lattice constant of 0.35 nm, followed by the formation of an atomically flat CrTe2 monolayer with a lattice constant of 0.39 nm. Annealing the Cr-Te layer can trigger stress-relief reconstruction, which creates stripe-like patterns with edges that host localized , effectively forming one-dimensional magnetic chains.

Simulating Shade: Researchers Model Tree Impact on Vegas Heat

How can trees provide relief from extreme heat in urban climates? This is what a recent study published in Environmental Research Climate hopes to address as a team of researchers investigated using urban street trees to provide shade relief from extreme temperatures, which continue to increase due to climate change. This study has the potential to help researchers, climate scientists, legislators, city planners, and the public better understand the benefits of trees for cooling urban spaces in the face of the increasing threat of climate change.

For the study, the researchers used a series of computer models between July and August 2022 to simulate how street tree planting in Las Vegas could provide relief from extreme heat and heat exposure. The goal of the study was to ascertain the overall effectiveness of planting non-native trees in an urban setting while estimating the amount of water they would need to survive and provide shade relief from extreme heat. In the end, the researchers found that desert environments are too hot for trees to adequately provide shade relief, primarily due to the trees’ water conservation efforts.

“Urban trees are not a silver bullet for cooling our cities, particularly for desert cities like Las Vegas,” said Dr. Juan Henao, who is a postdoctoral researcher at the Desert Research Institute and lead author of the study. “But they provide significant shade and of course other benefits. I know that I prefer to see trees, and they can help store carbon. We just need to remember that in order to cool the air, they need to release water vapor, and we need to give them enough water to do that. Any hot, dry city will need to consider these tradeoffs and really do their research to identify the right species for planting efforts.”

/* */