Toggle light / dark theme

The emerging armamentarium of cognitive warfare with Dr. James Giordano | CSI Talks #19

Convergent engagement of neural and computational sciences and technologies are reciprocally enabling rapid developments in current and near-future military and intelligence operations. In this podcast, Prof. James Giordano of Georgetown University will provide an overview of how these scientific and technological fields can be — and are being — leveraged for non-kinetic and kinetic what has become known as cognitive warfare; and will describe key issues in this rapidly evolving operational domain.

James Giordano PhD, is the Pellegrino Center Professor in the Departments of Neurology and Biochemistry; Chief of the Neuroethics Studies Program; Co-director of the Project in Brain Sciences and Global Health Law and Policy; and Chair of the Subprogram in Military Medical Ethics at Georgetown University Medical Center, Washington DC. Professor Giordano is Senior Bioethicist of the Defense Medical Ethics Center, and Adjunct Professor of Psychiatry at the Uniformed Services University of Health Sciences; Distinguished Stockdale Fellow in Science, Technology, and Ethics at the United States Naval Academy; Senior Science Advisory Fellow of the SMA Branch, Joint Staff, Pentagon; Non-resident Fellow of the Simon Center for the Military Ethic at the US Military Academy, West Point; Distinguished Visiting Professor of Biomedical Sciences, Health Promotions, and Ethics at the Coburg University of Applied Sciences, Coburg, GER; Chair Emeritus of the Neuroethics Project of the IEEE Brain Initiative; and serves as Director of the Institute for Biodefense Research, a federally funded Washington DC think tank dedicated to addressing emerging issues at the intersection of science, technology and national defense. He previously served as Donovan Group Senior Fellow, US Special Operations Command; member of the Neuroethics, Legal, and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA); and Task Leader of the Working Group on Dual-Use of the EU-Human Brain Project. Prof. Giordano is the author of over 350 peer-reviewed publications, 9 books and 50governmental reports on science, technology, and biosecurity, and is an elected member of the European Academy of Science and Arts, a Fellow of the Royal Society of Medicine (UK), and a Fulbright Professorial Fellow. A former US Naval officer, he was winged as an aerospace physiologist, and served with the US Navy and Marine Corps.

New metal-free porous framework materials may have potential for hydrogen storage

Researchers at the University of Liverpool and the University of Southampton have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.

In a study published in the journal Nature, the research team used inexpensive and abundant non-metallic elements, such as , to design non-metal organic porous frameworks (N-MOFs).

The new materials offer an alternative to (MOFs), a class of porous, crystalline materials made up of metals connected by organic linker compounds.

Physicists Bend Time Inside a Diamond, Creating a Brand-New Phase of Matter

Physicists at Washington University have forged ahead in the field of quantum mechanics by creating a new phase of matter known as “time crystals” and the even more advanced “time quasicrystals.”

These groundbreaking materials defy traditional physics by maintaining perpetual motion and could revolutionize quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

An acoustic Ising machine: Novel system tackles hard combinatorial problems

Researchers at the University of Gothenburg have developed a novel Ising machine that utilizes surface acoustic waves as an effective carrier of dense information flow. This approach enables fast, energy-efficient solutions to complex optimization problems, offering a promising alternative to conventional computing methods based on von-Neumann architecture. The findings are published in the journal Communications Physics.

Traditional computers can stumble when tackling —tasks of scheduling logistic operations, financial portfolio optimization and high frequency trading, optimizing communication channels in complex wireless networks, or predicting how proteins fold among countless structural possibilities.

In these cases, each added node—an additional logistic hub, network user, or molecular bond causes the number of possible configurations to explode exponentially. In contrast to linear or polynomial growth, an exponential increase in the number of possible solutions makes even the most powerful computers and algorithms lack the computational power and memory to evaluate every scenario in search of vanishingly small subsets representing satisfactorily optimal solutions.

From order to chaos: Understanding the principles behind collective motion in bacteria

The collective motion of bacteria—from stable swirling patterns to chaotic turbulent flows—has intrigued scientists for decades. When a bacterial swarm is confined in small circular space, stable rotating vortices are formed. However, as the radius of this confined space increases, the organized swirling pattern breaks down into a turbulent state.

This transition from ordered to chaotic flow has remained a long-standing mystery. It represents a fundamental question not only in the study of bacterial behavior but also in classical fluid dynamics, where understanding the emergence of turbulence is crucial for both controlling and utilizing complex flows.

In a recent study published in Proceedings of the National Academy of Sciences on March 14, 2025, a research team led by Associate Professor Daiki Nishiguchi from the Institute of Science Tokyo, Japan, has revealed in detail how bacterial swarms transition from organized movement to chaotic flow. Combining large-scale experiments, computer modeling, and , the team observed and explained previously unknown intermediate states that emerge between order and turbulence.

Quantum behaviour in brain neurons looks theoretically possible

A new study probing quantum phenomena in neurons as they transmit messages in the brain could provide fresh insight into how our brains function.

In this project, described in the Computational and Structural Biotechnology Journal, theoretical physicist Partha Ghose from the Tagore Centre for Natural Sciences and Philosophy in India, together with theoretical neuroscientist Dimitris Pinotsis from City St George’s, University of London and the MillerLab of MIT, proved that established equations describing the classical physics of brain responses are mathematically equivalent to equations describing quantum mechanics. Ghose and Pinotsis then derived a Schrödinger-like equation specifically for neurons.

Our brains process information via a vast network containing many millions of neurons, which can each send and receive chemical and electrical signals. Information is transmitted by nerve impulses that pass from one neuron to the next, thanks to a flow of ions across the neuron’s cell membrane. This results in an experimentally detectable change in electrical potential difference across the membrane known as the “action potential” or “spike”

Physicists Just Made a Century-Old Quantum Theory a Reality

Quantum physics just took a leap from theory to reality! Empa researchers have, for the first time, successfully built a long-theorized one-dimensional alternating Heisenberg model using synthetic nanographenes.

By precisely shaping these tiny carbon structures, they’ve unlocked new ways to manipulate quantum states, confirming century-old predictions. This breakthrough could be a stepping stone toward real-world quantum technologies, from ultra-fast computing to unbreakable encryption.

Recreating a Century-Old Quantum Model.

Recent Breakthroughs Accelerate The Race For Quantum Computing

The race toward scalable quantum computing has reached a pivotal moment, with major players like Microsoft, Google, and IBM pushing forward with breakthroughs. Microsoft’s recent announcement of its Majorana 1 chip marks a significant milestone, while Google’s Willow chip and IBM’s long-term quantum roadmap illustrate the industry’s diverse approaches to achieving fault-tolerant quantum systems. As the quantum computing industry debates the timeline for practical implementation, breakthroughs like Majorana 1 and Willow suggest that major advancements may be closer than previously thought. At the same time, skepticism remains, with industry leaders such as Nvidia CEO Jensen Huang cautioning that meaningful commercial quantum applications could still be decades away.

Microsoft is redefining quantum computing with its new Majorana 1 chip, a significant breakthrough in the pursuit of scalable and fault-tolerant quantum systems. This quantum processor is built on a novel topological architecture that integrates Majorana particles, exotic quantum states that enhance qubit stability and reduce errors. Unlike conventional qubit technologies, which require extensive error correction, Microsoft’s approach aims to build fault tolerance directly into the hardware, significantly improving the feasibility of large-scale quantum computing. Satya Nadella, Microsoft’s CEO, highlighted the significance of this milestone in his LinkedIn post, We’ve created an entirely new state of matter, powered by a new class of materials, topoconductors. This fundamental leap in computing enables the first quantum processing unit built on a topological core.