Toggle light / dark theme

Scientists reveal key to affordable, room-temperature quantum light

Quantum light sources are fickle. They can flicker like stars in the night sky and can fade out like a dying flashlight. However, newly published research from the University of Oklahoma proves that adding a covering to one of these light sources, called a colloidal quantum dot, can cause them to shine without faltering, opening the door to new, affordable quantum possibilities. The findings are available in Nature Communications.

Quantum dots, or QDs, are so small that if you scaled up a single quantum dot to the size of a baseball, a baseball would be the size of the moon. QDs are used in a variety of products, from computer monitors and LEDs to and biomedical engineering devices. They are also used in and communication.

A research study led by OU Assistant Professor Yitong Dong demonstrates that adding a crystalized molecular layer to QDs made of perovskite neutralizes surface defects and stabilizes the surface lattices. Doing so prevents them from darkening or blinking.

Searching for a universal principle for unconventional superconductivity

You may recognize graphite as the “lead” in a pencil, but besides helping you take notes or fill in countless bubbles on exam answer sheets, it is helping scientists grapple with the secrets of superconductivity.

Superconductivity happens when an electric current is transmitted through wires without the loss of any energy in the form of heat or resistance. Superconducting materials have the potential to revolutionize many aspects of our daily lives, from improving the electrical grid to making more powerful computers.

However, generally requires very low temperatures, so low they may become impractical, and the exact mechanisms of superconductivity are not well understood for many .

New Maps of the Bizarre, Chaotic Space-Time Inside Black Holes

In the late 1960s, physicists like Charles Misner proposed that the regions surrounding singularities—points of infinite density at the centers of black holes—might exhibit chaotic behavior, with space and time undergoing erratic contractions and expansions. This concept, termed the “Mixmaster universe,” suggested that an astronaut venturing into such a black hole would experience a tumultuous mixing of their body parts, akin to the action of a kitchen mixer.

S general theory of relativity, which describes the gravitational dynamics of black holes, employs complex mathematical formulations that intertwine multiple equations. Historically, researchers like Misner introduced simplifying assumptions to make these equations more tractable. However, even with these assumptions, the computational tools of the time were insufficient to fully explore the chaotic nature of these regions, leading to a decline in related research. + Recently, advancements in mathematical techniques and computational power have reignited interest in studying the chaotic environments near singularities. Physicists aim to validate the earlier approximations made by Misner and others, ensuring they accurately reflect the predictions of Einsteinian gravity. Moreover, by delving deeper into the extreme conditions near singularities, researchers hope to bridge the gap between general relativity and quantum mechanics, potentially leading to a unified theory of quantum gravity.

Understanding the intricate and chaotic space-time near black hole singularities not only challenges our current physical theories but also promises to shed light on the fundamental nature of space and time themselves.


Physicists hope that understanding the churning region near singularities might help them reconcile gravity and quantum mechanics.

What’s the future of connecting our tech to our brains?

A brain’s 86 billion neurons are always chattering along with tiny electrical and chemical signals. But how can we get inside the brain to study the fine details? Can we eavesdrop on cells using other cells? What is the future of communication between brains? Join Eagleman with special guest Max Hodak, founder of Science Corp, a company pioneering stunning new methods in brain computer interfaces.

DARPA, Microsoft Hail Quantum Chip Breakthrough

Microsoft, after teaming up with the Defense Advanced Research Projects Agency (DARPA), last week unveiled a new chip that could fast-track the development of quantum computers and bring them into wider use within years instead of decades.

Microsoft has developed Majorana 1 – a breakthrough material known as a topoconductor – putting the tech giant on track to build the world’s first fault-tolerant prototype (FTP) of a scalable quantum computer within years – rather than decades.

That breakthrough came as part of the final phase of DARPA’s Underexplored Systems for Utility-Scale Quantum Computing (US2QC) program.

Nanoparticles offer enhanced treatment for root canal infection with fewer complications

Apical periodontitis, a chronic and hard-to-treat dental infection, affects more than half of the population worldwide and is the leading cause of tooth loss. Root canal is the standard treatment, but existing approaches to treat the infection have many limitations that can cause complications, leading to treatment failure.

Now, researchers at the School of Dental Medicine, Perelman School of Medicine, and School of Engineering and Applied Sciences have identified a promising new therapeutic option that could potentially disrupt current treatments. The team of researchers is part of the Center for Innovation & Precision Dentistry, a joint research center between Penn Dental Medicine and Penn Engineering that leverages engineering and computational approaches to advance oral and craniofacial health care innovation.

In a paper published in the Journal of Clinical Investigation, they show that ferumoxytol, an FDA-approved iron oxide nanoparticle formulation, greatly reduces infection in patients diagnosed with apical periodontitis.

Surprise Spiral Shape Revealed in The Darkness Surrounding The Solar System

The edge of the Solar System is a strange place, full of oddities we’ve only just begun to probe. But perhaps the oddest of all is the Oort Cloud, a vast field of icy debris extending out to 100,000 times the distance between Earth and the Sun.

We have a rough idea of the size and shape of this field, but the fine particulars elude our understanding. Now, a new computational study has revealed a surprising structure – a spiral generated by the tidal forces exerted by the Milky Way galaxy itself.

The finding, in press at The Astrophysical Journal, is currently available on preprint server arXiv.

Is Time an Illusion? A New Study Explores Its Quantum Computational Nature

Have you ever questioned the deep nature of time? While some physicists argue that time is just an illusion, dismissing it outright contradicts our lived experience. In my latest work, Temporal Mechanics: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time (2025), I explore how time is deeply rooted in the computational nature of reality and information processing by conscious systems. This paper tackles why the “now” is all we have.

In the absence of observers, the cosmic arrow of time doesn’t exist. This statement is not merely philosophical; it is a profound implication of the problem of time in physics. In standard quantum mechanics, time is an external parameter, a backdrop against which events unfold. However, in quantum gravity and the Wheeler-DeWitt equation, the problem of time emerges because there is no preferred universal time variable—only a timeless wavefunction of the universe. The flow of time, as we experience it, arises not from any fundamental law but from the interaction between observers and the informational structure of reality.

New calculation links disparate pion reactions in nuclear physics

An early-career physicist mathematically connects timelike and spacelike form factors, opening the door to further insights into the inner workings of the strong force. A new lattice QCD calculation connects two seemingly disparate reactions involving the pion, the lightest particle governed by the strong interaction.

As an undergraduate student at Tecnológico de Monterrey in Mexico, Felipe Ortega-Gama worked at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility as part of the Science Undergraduate Laboratory Internships program. There, Ortega-Gama worked with Raúl Briceño, who was a jointly appointed staff scientist in the lab’s Center for Theoretical and Computational Physics (Theory Center) and professor at Old Dominion University.

Briceño introduced him to quantum chromodynamics (QCD), the theory that describes the strong interaction. This is the force that binds quarks and gluons together to form protons, neutrons and other particles generically called hadrons. Theorists use lattice QCD, a computational method for solving QCD, to make predictions based on this theory. These predictions are then used to help interpret the results of experiments involving hadrons.