Toggle light / dark theme

Published: 2012/11/01 | ISBN: 311027325X | PDF | 349 pages | 12.06 MB

The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.

Read more

More on the QC Blueprint which enables others to use as a reference when building a QC.


According to Prof Winfried Hensinger of the University of Sussex in the United Kingdom, he and his team have the first practical design for a quantum computer. Like millions of others, I have struggled to come to an understanding of quantum mechanics and how a quantum computer might work.

It would use qubits rather than standard on/off or 1 and 0 bits used in traditional computers. A qubit can have a state of anywhere between zero and one, including all the “states” in between. Theoretically, a quantum computer can perform a very large number of calculations simultaneously using the ideas of super positioning and quantum entanglement. The theory is that all the necessary calculations are carried out at virtually the same time, e.g. working out all the factors of a very large number. This kind of problem can take a regular computer quite a while.

Prof Hensinger claims he has produced a “how to build it” template, published in Science Advances journal, with a scalable construction plan which you can read here: www.advances.sciencemag.org/content/3/2/e1601540.full. It involves ions, long wave radiation, overlapping fields, vacuum chambers and other pieces of exacting technology. To be honest, I have never quite understood how you program in the questions and read the answers from quantum computers.

For those interested in life extension and bionic / cyborg type enhancements, this CMU Robotics Institute Seminar gives an overview of the background and current developments in artificial vision. José Alain Sahel MD is a world leading ophthalmologist with a lengthy bio and numerous honors and appointments.

In the future, if you’re going blind, these sight restoration technologies may be used to remediate your vision loss.

Three major ideas are covered. 1) Implanting arrays of tiny 3-color LEDs under a failed retina to stimulate still-okay cells, and 2) using gene therapy to express a novel photoreceptor, borrowed from algae, to restore a form of sight to failed cells. These can be done together. Lots of studies in mice, primates, and humans. Some coverage is also given to 3) directly implanting electronics in the brain to send complete images to vision centers, but this is still at an early stage.

None of this is anywhere near total restoration. The patients can make out a few words for the first time. And unlike normal vision, the range of light intensity levels remains very narrow. But obviously it’s much better than nothing and will get better over time.

As a point of humor, he tells the story of one of his blind patients who totally redesigned one of his experiments for him.

Nice advancement; looking forward indeed to the day I know longer look or touch a keypad again or even markers to a white or imaging board.


Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

Read more

While the recent cases of Ebola and Zika contributed to an emphasis on research, response, and policy related to EIDs, the meeting also had presentations on emerging biotechnologies. Of particular note was the Synthetic Biology panel, which focused on the current state of synthetic biology, its use in the health security defense enterprise, and the policy conundrums that need to be addressed.

Synthetic Biology – Complexity through Simplification

The first presenter, Dr. Christopher Voigt of the Synthetic Biology Center at MIT, noted that synthetic biology was the application of engineering principles to biological systems. The end goal of this bioengineering framework is to leverage ever-increasing computer capabilities to simplify both the designing and writing of genomic sequences. Further simplification would then allow for the creation of more complex systems.

Read more

Personally; I see this not being needed in less than 10 years.


Automatic speech recognition is on the verge of becoming the chief way of interacting with primary computing devices. A decade ago, the concept of automatic speech recognition was laughed at.

Anticipating this rise in voice-controlled electronics, a team of researchers from MIT have developed a low-power chip designed for automatic speech recognition. A cell phone running speech-recognition software might need roughly 1 watt of power, but the new chip requires between 0.2 and 10 milliwatts only, based on the number of words it has to recognize.

In a real-world application, that potentially means a power savings of 90 to 99%, which could make voice control feasible for moderately simple electronic devices. That includes power-constrained gadgets that have to go months between battery charges or extract energy from their environments.

Read more

SAN FRANCISCO – In a policy speech that puts Microsoft front-and-center in the shifting ground of both politics and nationalism, company president Brad Smith said tech companies must declare themselves neutral when nations go up against nations in cyberspace.

“Let’s face it, cyberspace is the new battlefield,” he told an overflow audience in the opening keynote at the RSA computer security conference.

Tech must be committed to “100% defense and zero percent offense,” Smith said.

Read more