Toggle light / dark theme

I actually had a person recently state quantum was a fad; boy were they ever wrong.


During the next ten years, quantum technologies will become part of and revolutionize our everyday lives in the form of computers, sensors, encryption, and much more—and in a way that can be difficult for us to comprehend.

Businesses will also boost both their research and development activities in this area.

“As from 2018, EU’s future flagship project, which is backed by EUR 1 billion, will focus on quantum technology, and several European countries are investing massively in the area. Innovation Fund Denmark has contributed DKK 80 million, and over the next couple of years, more funds are likely to be allocated to quantum research,” explains Ulrik Lund Andersen, Professor at DTU Physics.

Scientists have invented a new type of liquid crystal that allows tv and computer manufacturers to pack three times as many pixels into the same area of screen, while reducing the amount of power required to run the device.

This new type of blue-phase liquid crystal is so effective because it bypasses the colour filters used in current screen technology. This change alone reduces the amount of energy lost during light transmission by more than 40 percent.

“Today’s Apple Retina displays have a resolution density of about 500 pixels per inch,” says one of the team, physicist Shin-Tson Wu from University of Central Florida.

Read more

The bottom-line why folks are investing so much in QC is frankly because it means you will be behind everyone else who has adopted a superior infrastructure. As a consumer, if I can use my private information to secure a loan or access my medical information without fear of exposure of my information as well as performance of my online media and other online services are 100 times faster than any known network service to date; it doesn’t take a brain surgeon to know what I will do,

And, banks, trading houses, etc. know this.


Thanks to the collaborative effort of an international team of scientists led by Professor Winfried Hensinger of the University of Sussex in UK, the world may have gotten one step closer to building the most powerful computer ever — a large-scale quantum computer capable of solving ultra-complex problems that will take a regular computer billions of years to solve.

Quantum computers work quite differently from conventional computers. Instead of typical computer ‘bits’ that can represent either the value ‘0’ or ‘1’, quantum computers use ‘qubits’ (short for quantum bits) that are capable of representing either ‘1’ or ‘0’, or both at the same time. This is made possible by the extraordinary property of qubits known as ‘superpositioning’ — the ability to exist as two different states at the same time.

Superpositioning is what allows quantum computers to effectively handle complex calculations simultaneously. But it is also this particular state that makes quantum computers difficult to build. That’s because an ion in superposition cannot be allowed to come into contact with anything from the outside given the fact that as soon as it does it loses its superposition state, reverting into just one state and consequently removing its ‘quantumness’ and its ability for super-computing.

Read more

For most people to understand Quantum and its importance and potential for various areas of our lives; means pushing away everything that you have known about technology & natural sciences (biology, geology, environmental, etc.). Those of us who have been doing research and development in quantum have had to rethink/ rewire our thoughts and ideas about what is possible and what is not possible in medicine, technology, etc.

Once you begin understanding this concept then you begin to understand more the impact and possibilities of a quantum enriched world.


In ancient times, it would have been called an oracle – a source of instant insight on the most perplexing problems. Now, scientists are closing in on making a device capable of such feats.

Its name is as enigmatic as the source of its power: the quantum computer.

We all love graphene — the one-atom-thick sheets of carbon aren’t just super flexible, harder than diamond, and stronger than steel, they’ve also recently become superconductors in their own right.

But it’s not the only over-achieving nanomaterial out there. Researchers have just simulated a stretched out, one-dimensional (1D) chain of boron, predicting that the material could have even weirder properties than graphene.

To be clear, 1D boron chains haven’t been created as yet — so far, this research is purely based on detailed computer simulations of the new material.

Read more

Wish these guys a lot of luck; however, they need to hurry up soon as China is already had a head start with QC.


As we saw during the 2016 US election, protecting traditional computer systems, which use zeros and ones, from hackers is not a perfect science. Now consider the complex world of quantum computing, where bits of information can simultaneously hold multiple states beyond zero and one, and the potential threats become even trickier to tackle. Even so, researchers at the University of Ottawa have uncovered clues that could help administrators protect quantum computing networks from external attacks.

“Our team has built the first high-dimensional quantum cloning machine capable of performing quantum hacking to intercept a secure quantum message,” said University of Ottawa Department of Physics professor Ebrahim Karimi, who holds the Canada Research Chair in Structured Light. “Once we were able to analyze the results, we discovered some very important clues to help protect quantum computing networks against potential hacking threats.”

Quantum systems were believed to provide perfectly secure data transmission because until now, attempts to copy the transmitted resulted in an altered or deteriorated version of the original information, thereby defeating the purpose of the initial hack. Traditional computing allows a hacker to simply copy and paste information and replicate it exactly, but this doesn’t hold true in the quantum computing world, where attempts to copy quantum information-or qudits-result in what Karimi refers to as “bad” copies. Until now.

Nice write up. What is interesting is that most folks still have not fully understood the magnitude of quantum and how as well as why we will see it as the fundamental ingredient to all things and will be key in our efforts around singularity.


When it comes to studying transportation systems, stock markets and the weather, quantum mechanics is probably the last thing to come to mind. However, scientists at Australia’s Griffith University and Singapore’s Nanyang Technological University have just performed a ‘proof of principle’ experiment showing that when it comes to simulating such complex processes in the macroscopic world quantum mechanics can provide an unexpected advantage.

Griffith’s Professor Geoff Pryde, who led the project, says that such processes could be simulated using a “quantum hard drive”, much smaller than the required for conventional simulations.

“Stephen Hawking once stated that the 21st century is the ‘century of complexity’, as many of today’s most pressing problems, such as understanding climate change or designing transportation system, involve huge networks of interacting components,” he says.

Nearly every other year the transistors that power silicon computer chip shrink in size by half and double in performance, enabling our devices to become more mobile and accessible. But what happens when these components can’t get any smaller? George Tulevski researches the unseen and untapped world of nanomaterials. His current work: developing chemical processes to compel billions of carbon nanotubes to assemble themselves into the patterns needed to build circuits, much the same way natural organisms build intricate, diverse and elegant structures. Could they hold the secret to the next generation of computing?

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.
Find closed captions and translated subtitles in many languages at http://www.ted.com/translate

Follow TED news on Twitter: http://www.twitter.com/tednews
Like TED on Facebook: https://www.facebook.com/TED

Read more

Latest update on the NPL Research on how to have cleaner Quantum Devices.


A paper, based on NPL collaborative research, has been published in the journal Physical Review Letters The work paves the way for the identification and elimination of small amounts of surface defects whose presence on the surfaces of solid state quantum devices is detrimental to their performance.

The research was the result of a fruitful collaboration between NPL’s Quantum Detection Group, the Quantum Device Physics Laboratory at Chalmers University of Technology and the Institute of Chemical Physics at the University of Latvia.

Artistic impression of noise in quantum circuits

The advancement of quantum computing faces a tremendous challenge in improving the reproducibility and robustness of quantum circuits. One of the biggest problems in this field is the presence of noise intrinsic to all these devices, the origin of which has puzzled scientists for many decades.

Read more