Menu

Blog

Archive for the ‘computing’ category: Page 518

Aug 5, 2020

Intel’s Pohoiki Beach, a 64-Chip Neuromorphic System, Delivers Breakthrough Results in Research Tests

Posted by in categories: computing, information science, mapping, neuroscience

“We are impressed with the early results demonstrated as we scale Loihi to create more powerful neuromorphic systems. Pohoiki Beach will now be available to more than 60 ecosystem partners, who will use this specialized system to solve complex, compute-intensive problems.” –Rich Uhlig, managing director of Intel Labs

Why It’s Important: With the introduction of Pohoiki Beach, researchers can now efficiently scale up novel neural-inspired algorithms — such as sparse coding, simultaneous localization and mapping (SLAM), and path planning — that can learn and adapt based on data inputs. Pohoiki Beach represents a major milestone in Intel’s neuromorphic research, laying the foundation for Intel Labs to scale the architecture to 100 million neurons later this year.

Aug 5, 2020

Big Bounce Simulations Challenge the Big Bang

Posted by in categories: computing, cosmology

Detailed computer simulations have found that a cosmic contraction can generate features of the universe that we observe today.

Aug 5, 2020

Unusual nanoparticles could benefit the quest to build a quantum computer

Posted by in categories: biological, chemistry, climatology, computing, engineering, nanotechnology, quantum physics, sustainability

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

A Rutgers-led team has created ultra-small dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

“Our findings are quite important and intriguing in a number of ways, and more research is needed to understand how these exotic crystals work and to fulfill their potential,” said senior author Tewodros (Teddy) Asefa, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University-New Brunswick. He’s also a professor in the Department of Chemical and Biochemical Engineering in the School of Engineering.

Aug 4, 2020

Casimir force used to control and manipulate objects

Posted by in categories: computing, mathematics, quantum physics

A collaboration between researchers from the University of Western Australia and the University of California Merced has provided a new way to measure tiny forces and use them to control objects.

The research, published today in Nature Physics, was jointly led by Professor Michael Tobar, from UWA’s School of Physics, Mathematics and Computing and Chief Investigator at the Australian Research Council Centre of Excellence for Engineered Quantum Systems and Dr. Jacob Pate from the University of Merced.

Professor Tobar said that the result is a new way to manipulate and control in a non-contacting way, allowing enhanced sensitivity without adding loss.

Aug 4, 2020

Implantable transmitter provides wireless option for biomedical devices

Posted by in categories: biotech/medical, computing, mobile phones, wearables

Purdue University innovators are working on inventions to use micro-chip technology in implantable devices and other wearable products such as smart watches to improve biomedical devices, including those used to monitor people with glaucoma and heart disease.

The Purdue team developed a fully implantable radio-frequency transmitter chip for wireless sensor nodes and . The research is published in the journal IEEE Transactions on Circuits and Systems II. The transmitter chip consumes lowest amount of energy per digital bit published to date.

The transmitter works in a similar fashion to in mobile phones and , but the Purdue transmitter has an unprecedented level of miniaturization and low-energy consumption that it can be implanted into an eye to monitor pressure for a glaucoma patient or into another part of the body to measure data related to heart functions.

Aug 3, 2020

Canadian ice caps disappear, confirming 2017 scientific prediction

Posted by in categories: computing, space

The St. Patrick Bay ice caps on the Hazen Plateau of northeastern Ellesmere Island in Nunavut, Canada, have disappeared, according to NASA satellite imagery. National Snow and Ice Data Center (NSIDC) scientists and colleagues predicted via a 2017 paper in The Cryosphere that the ice caps would melt out completely within the next five years, and recent images from NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) have confirmed that this prediction was accurate.

Mark Serreze, director of NSIDC, Distinguished Professor of Geography at the University of Colorado Boulder, and lead author on the paper, first set foot on the St. Patrick Bay in 1982 as a young graduate student. He visited the ice caps with his advisor, Ray Bradley, of the University of Massachusetts.

“When I first visited those ice caps, they seemed like such a permanent fixture of the landscape,” said Serreze. “To watch them die in less than 40 years just blows me away.”

Aug 2, 2020

Confidential Computing Will Revolutionize The Internet Of Things

Posted by in categories: computing, internet

Confidential computing is the solution that allows both people and entities to keep data confidential and still put it to use.

Aug 1, 2020

XCY Squeezes a 4K-Capable Desktop PC Into a 2.4-Inch Case

Posted by in categories: computing, electronics

If you’re on the look out for a desktop PC that’s small enough to sit under a TV, Chinese brand XCY has a very small computer they’d like to sell you.

As Liliputing reports, the XCY X51 is about as small as you could possibly make a fully-featured desktop PC. It measures 2.4-by-2.4-by-1.7-inches and weighs a mere 121 grams. However, inside you’ll find a quad-core Intel Celeron N4100 clocked at 1.1GHz (2.4Ghz burst frequency) complete with UHD Graphics 600 GPU. The processor is complemented by 8GB of 2,133MHz DDR4 RAM, a 128GB M.2 SSD, and a micro SD card slot for further storage expansion.

Continue reading “XCY Squeezes a 4K-Capable Desktop PC Into a 2.4-Inch Case” »

Aug 1, 2020

Nvidia in Advanced Talks to Buy SoftBank’s Chip Company Arm

Posted by in categories: computing, materials

Nvidia Corp. is in advanced talks to acquire Arm Ltd., the chip designer that SoftBank Group Corp. bought for $32 billion four years ago, according to people familiar with the matter.

The two parties aim to reach a deal in the next few weeks, the people said, asking not to be identified because the information is private. Nvidia is the only suitor in concrete discussions with SoftBank, according to the people.

A deal for Arm could be the largest ever in the semiconductor industry, which has been consolidating in recent years as companies seek to diversify and add scale. But any deal with Nvidia, which is a customer of Arm, would likely trigger regulatory scrutiny as well as a wave of opposition from other users.

Aug 1, 2020

MIT Scientists Create Giant “Artificial Atoms” to Enable Quantum Processing and Communication in One

Posted by in categories: computing, particle physics, quantum physics

Researchers devise an on-off system that allows high-fidelity operations and interconnection between processors.

MIT researchers have introduced a quantum computing architecture that can perform low-error quantum computations while also rapidly sharing quantum information between processors. The work represents a key advance toward a complete quantum computing platform.

Previous to this discovery, small-scale quantum processors have successfully performed tasks at a rate exponentially faster than that of classical computers. However, it has been difficult to controllably communicate quantum information between distant parts of a processor. In classical computers, wired interconnects are used to route information back and forth throughout a processor during the course of a computation. In a quantum computer, however, the information itself is quantum mechanical and fragile, requiring fundamentally new strategies to simultaneously process and communicate quantum information on a chip.