Menu

Blog

Archive for the ‘computing’ category: Page 360

Mar 11, 2022

How evolution ‘hacked’ its way to intelligence from the bottom up

Posted by in category: computing

Powerful tricks from computer science and cybernetics show how evolution ‘hacked’ its way to intelligence from the bottom up by Michael Levin & Rafael Yuste + BIO.

Mar 11, 2022

New computational tool could help optimize treatment of Alzheimer’s disease

Posted by in categories: biotech/medical, computing, neuroscience

Scientists have developed a novel computational approach that incorporates individual patients’ brain activity to calculate optimal, personalized brain stimulation treatment for Alzheimer’s disease. Lazaro Sanchez-Rodriguez of the University of Calgary, Canada, and colleagues present their new framework in PLOS Computational Biology.

Electrical stimulation of certain parts of the could help promote healthy activity in neural circuits impaired by Alzheimer’s disease, a neurodegenerative condition. This experimental treatment has shown some promise in . However, all patients currently receive identical treatment protocols, potentially leading to different outcomes according to individual variations in brain signaling.

To investigate the possibility of personalized brain stimulation, Sanchez-Rodriguez and colleagues took a theoretical approach. They built a computational tool that incorporates patients’ MRI scans and physiological brain signaling measurements to calculate optimal brain stimulation signals, with the goal of delivering efficient, effective personalized treatment.

Mar 11, 2022

Magnetism helps electrons vanish in high-temp superconductors

Posted by in categories: computing, quantum physics

Superconductors—metals in which electricity flows without resistance—hold promise as the defining material of the near future, according to physicist Brad Ramshaw, and are already used in medical imaging machines, drug discovery research and quantum computers being built by Google and IBM.

However, the super-low temperatures need to function—a few degrees above absolute zero—make them too expensive for wide use.

In their quest to find more useful superconductors, Ramshaw, the Dick & Dale Reis Johnson Assistant Professor of physics in the College of Arts and Sciences (A&S), and colleagues have discovered that magnetism is key to understanding the behavior of electrons in “high-temperature” superconductors. With this finding, they’ve solved a 30-year-old mystery surrounding this class of superconductors, which function at much higher temperatures, greater than 100 degrees above absolute zero. Their paper, “Fermi Surface Transformation at the Pseudogap Critical Point of a Cuprate Superconductor,” published in Nature Physics March 10.

Mar 9, 2022

Google Is Using Radar to Help Computers Read and React to Your Body Language

Posted by in categories: computing, electronics

The sensor sends out electromagnetic waves in a broad beam, which are intercepted and reflected back by objects (or people) in their path.

Mar 9, 2022

The liquid hard drive that could store a terabyte of data in a tablespoon of fluid

Posted by in categories: computing, nanotechnology

Circa 2014


New research on nanoparticles shows that they could be used to encode information when suspended in a liquid. This could one day allow us to store vast amounts of data in a very small volume of “digital colloid.”

Mar 9, 2022

Stanford engineers develop computer that operates on water droplets

Posted by in categories: bioengineering, computing, physics

Circa 2015


Stanford bioengineer Manu Prakash and his students have developed a synchronous computer that operates using the unique physics of moving water droplets.

Continue reading “Stanford engineers develop computer that operates on water droplets” »

Mar 8, 2022

Bio-FlatScope dives deep for useful data

Posted by in categories: computing, neuroscience

Want to monitor the brain of a running tiger?

First, catch the tiger.

Then attach Bio-FlatScope, the latest iteration of lensless microscopy being developed at Rice University.

Continue reading “Bio-FlatScope dives deep for useful data” »

Mar 7, 2022

Simulated human eye movement aims to train metaverse platforms

Posted by in categories: augmented reality, computing, virtual reality

Computer engineers at Duke University have developed virtual eyes that simulate how humans look at the world accurately enough for companies to train virtual reality and augmented reality programs. Called EyeSyn for short, the program will help developers create applications for the rapidly expanding metaverse while protecting user data.

The results have been accepted and will be presented at the International Conference on Information Processing in Sensor Networks (IPSN), May 4–6, 2022, a leading annual forum on research in networked sensing and control.

“If you’re interested in detecting whether a person is reading a comic book or advanced literature by looking at their eyes alone, you can do that,” said Maria Gorlatova, the Nortel Networks Assistant Professor of Electrical and Computer Engineering at Duke.

Mar 7, 2022

Scientists confirm thermonuclear fusion in a sheared-flow Z-pinch device

Posted by in categories: computing, nuclear energy, physics

In findings that could help advance another “viable pathway” to fusion energy, research led by Lawrence Livermore National Laboratory (LLNL) physicists has proven the existence of neutrons produced through thermonuclear reactions from a sheared-flow stabilized Z-pinch device.

The researchers used advanced computer modeling techniques and diagnostic measurement devices honed at LLNL to solve a decades-old problem of distinguishing neutrons produced by from ones produced by ion beam-driven instabilities for plasmas in the magneto-inertial fusion regime.

While the team’s previous research showed neutrons measured from sheared-flow stabilized Z-pinch devices were “consistent with thermonuclear production, we hadn’t completely proven it yet,” said LLNL physicist Drew Higginson, one of the co-authors of a paper recently published in Physics of Plasmas.

Mar 7, 2022

Newly discovered brain cells may be a memory filing system, study suggests

Posted by in categories: biotech/medical, computing, neuroscience

A scientist opens a laptop in front of a patient. On screen, a boy, tied to a fleet of balloons, fades in. As he rises into the air, the scene cuts abruptly to an office, where a man sits in front of his boss. A question then appears: “Was anyone in the video wearing a tie?”

Jie Zheng, a postdoctoral fellow at Boston Children’s Hospital, had flown to Los Angeles to show the video to this patient, who has a severe seizure disorder. Like with the 18 other patients who were part of the study, neurosurgeons had placed electrodes in the patient’s brain to pinpoint what had been causing their seizures. Zheng and a group of scientists in a federally funded BRAIN Initiative consortium used this opportune moment to find neurons involved in the creation of memories. While subjects watched clips from movies and answered questions that tested their memory of the videos, the electrical activity of their brains was monitored.

Over three years, the work — a collaboration between researchers at Cedars-Sinai in L.A., Boston Children’s, and the University of Toronto — led to the discovery of two new groups of brain cells: boundary and event cells. The researchers theorized that these neurons are involved in cleaving experiences into distinct events that humans can better remember. The study, published in Nature Neuroscience, may pave the way for new treatments for memory disorders, the authors said.