Menu

Blog

Archive for the ‘computing’ category: Page 335

Jan 20, 2022

Scientists achieve key elements for fault-tolerant quantum computation in silicon spin qubits

Posted by in categories: computing, quantum physics

Researchers from RIKEN and QuTech—a collaboration between TU Delft and the Netherlands Organisation for Applied Scientific Research (TNO)— have achieved a key milestone toward the development of a fault-tolerant quantum computer. They were able to demonstrate a two-qubit gate fidelity of 99.5 percent—higher than the 99 percent considered to be the threshold for building fault-tolerant computers—using electron spin qubits in silicon, which are promising for large-scale quantum computers as the nanofabrication technology for building them already exists. This study was published in Nature.

The world is currently in a race to develop large-scale quantum computers that could vastly outperform classical computers in certain areas. However, these efforts have been hindered by a number of factors, including in particular the problem of decoherence, or noise generated in the qubits. This problem becomes more serious with the number of qubits, hampering scaling up. In order to achieve a large-scale that could be used for useful applications, it is believed that a two-qubit gate fidelity of at least 99 percent to implement the surface code for error correction is required. This has been achieved in certain types of computers, using qubits based on superconducting circuits, trapped ions, and nitrogen-vacancy centers in diamond, but these are hard to scale up to the millions of qubits required to implement practical quantum computation with an error correction.

To address these problems, the group decided to experiment with a quantum dot structure that was nanofabricated on a strained silicon/silicon germanium quantum well substrate, using a controlled-NOT (CNOT) gate. In previous experiments, the gate fidelity was limited due to slow gate speed. To improve the gate speed, they carefully designed the device and tuned it by applying different voltages to the gate electrodes. This combined an established fast single-spin rotation technique using micromagnets with large two-qubit coupling. The result was a gate speed that was 10 times better than previous attempts. Interestingly, although it had been thought that increasing gate speed would always lead to better fidelity, they found that there was a limit beyond which increasing the speed actually made the fidelity worse.

Jan 19, 2022

Quantum startups Pasqal and Qu&Co merge and promise 1,000 qubits by 2023

Posted by in categories: computing, information science, particle physics, quantum physics

Hardware company uses neutral atom design while algorithm experts integrate quantum algorithms into existing software platforms.

Pasqal is combining its neutral atom-based hardware with Qu&Co’s algorithm portfolio to launch a combined quantum computing company based in Paris with operations in seven countries. The companies announced the merger Tuesday, Jan. 11.

Jan 19, 2022

How To Build The Universe in a Computer

Posted by in categories: computing, physics, space, transhumanism

This series is absolutely fantastic. Especially for Transhumanist non-astrophysicists like me!


Thank you to Wren for supporting PBS. To learn more, go to https://wren.co/start/spacetime.

Continue reading “How To Build The Universe in a Computer” »

Jan 19, 2022

In a Historic Milestone, Silicon Quantum Computing Just Exceeded 99% Accuracy

Posted by in categories: computing, quantum physics

A major milestone has just been reached in quantum computing.

Three separate teams around the world have passed the 99 percent accuracy threshold for silicon-based quantum computing, placing error-free quantum operations within tantalizing grasp.

In Australia, a team led by physicist Andrea Morello of the University of New South Wales achieved 99.95 percent accuracy with one-qubit operations, and 99.37 percent for two-qubit operations in a three-qubit system.

Jan 19, 2022

Arduino Meets Quantum Computer

Posted by in categories: computing, internet, quantum physics

| Hackaday


Quantum computers aren’t quite ready for the home lab, but since there are ways to connect to some over the Internet, you can experiment with them more easily than you might think. [Norbert] decided to interface a giant quantum computer to an ordinary Arduino. Why? Well, that isn’t necessarily clear, but then again, why not? He explains basic quantum computing and shows his setup in the video below.

Continue reading “Arduino Meets Quantum Computer” »

Jan 19, 2022

Tesla’s New Infotainment Computers Are Sapping Range

Posted by in category: computing

It’s unclear whether or not the new Ryzen-based systems can run Crysis.

Jan 19, 2022

Tesla Giga Nevada to start using Redwood’s recycled battery components

Posted by in categories: computing, mobile phones, sustainability, transportation

On Tuesday, January 4, Panasonic announced that Redwood Materials would start supplying copper foil to its battery production facility in Giga Nevada. The Japanese tech giant announced the news during the 2022 CES tech trade show.

“Our work together to establish a domestic circular supply chain for batteries is an important step in realizing the full opportunity that EVs have to shape a much more sustainable world,” said Allan Swan, the President of Panasonic Energy of North America, at the latest CES tech trade show.

Redwood Materials, which former Tesla CTO JB Straubel founded, will be supplying Panasonic with copper foil made from recycled materials. The company recycles scripts from discarded electronics like cell phone batteries, laptops, power tools, and even scooters and electric bicycles. Redwood extracts materials like cobalt, nickel, and lithium, which are usually mined, from discarded electronics.

Jan 18, 2022

Microsoft posts DIY teardown video for Surface laptop repairs

Posted by in category: computing

In response to pressure from right-to-repair advocates, Microsoft has released a new teardown video for its Surface Laptop SE.

Jan 18, 2022

D-Wave increases European presence with quantum computer in Germany

Posted by in categories: computing, quantum physics

D-Wave Systems is ramping up in the race to so-called quantum supremacy — the bid to become the first to successfully commercialize quantum computing.

Jan 18, 2022

Magnetic Surprise Revealed in “Magic-Angle” Graphene — Potential Quantum Computing Applications

Posted by in categories: computing, nanotechnology, quantum physics

Magnets and superconductors don’t normally get along, but a new study shows that ‘magic-angle’ graphene is capable of producing both superconductivity and ferromagnetism, which could be useful in quantum computing.

When two sheets of the carbon nanomaterial graphene are stacked together at a particular angle with respect to each other, it gives rise to some fascinating physics. For instance, when this so-called “magic-angle graphene” is cooled to near absolute zero 0, it suddenly becomes a superconductor, meaning it conducts electricity with zero resistance.

Now, a research team from Brown University has found a surprising new phenomenon that can arise in magic-angle graphene. In research published in the journal Science, the team showed that by inducing a phenomenon known as spin-orbit coupling, magic-angle graphene becomes a powerful ferromagnet.