Toggle light / dark theme

9 nov 2022.


The challenge of fabricating nanowires directly on silicon substrates for the creation of the next generation of electronics has finally been solved by researchers from Tokyo Tech. Next-generation spintronics will lead to better memory storage mechanisms in computers, making them faster and more efficient.

As our world modernizes faster than ever before, there is an ever-growing need for better and faster electronics and computers. Spintronics is a new system which uses the spin of an electron, in addition to the charge state, to encode data, making the entire system faster and more efficient. Ferromagnetic nanowires with high coercivity (resistance to changes in magnetization) are required to realize the potential of spintronics. Especially L 10-ordered (a type of crystal structure) cobalt-platinum (CoPt) nanowires.

Conventional fabrication processes for L 10-ordered nanowires involve heat treatment to improve the physical and chemical properties of the material, a process called annealing on the crystal substrate; the transfer of a pattern onto the substrate through lithography; and finally the chemical removal of layers through a process called etching. Eliminating the etching process by directly fabricating nanowires onto the silicon substrate would lead to a marked improvement in the fabrication of spintronic devices. However, when directly fabricated nanowires are subjected to annealing, they tend to transform into droplets as a result of the internal stresses in the wire.

Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser.

Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with MSE postdoctoral fellow Zhifeng Zhang and ESE Ph.D. student Haoqi Zhao, debuted the technology in a recent study published in Nature. The group worked in collaboration with scientists from the Polytechnic University of Milan, the Institute for Cross-Disciplinary Physics and Complex Systems, Duke University and the City University of New York (CUNY).

Tiny magnetic whirlpools could transform memory storage in high performance computers.

Magnets generate invisible fields that attract certain materials. A common example is refrigerator magnets. Far more important to our everyday lives, magnets also can store data in computers. Exploiting the direction of the magnetic field (say, up or down), microscopic bar magnets each can store one bit of memory as a zero or a one—the language of computers.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory want to replace the bar magnets with tiny magnetic vortices. As tiny as billionths of a meter, these vortices are called skyrmions, which form in certain . They could one day usher in a new generation of microelectronics for memory storage in .

A discovery at University of Limerick in Ireland has revealed for the first time that unconventional brain-like computing at the tiniest scale of atoms and molecules is possible.

Researchers at University of Limerick’s Bernal Institute worked with an international team of scientists to create a new type of organic material that learns from its past behavior.

The discovery of the “dynamic molecular switch” that emulates synaptic behavior is revealed in a new study in the journal Nature Materials.

A team of German and Spanish researchers from Valencia, Münster, Augsburg, Berlin and Munich have succeeded in controlling individual light quanta to an extremely high degree of precision. In Nature Communications, the researchers report how, by means of a soundwave, they switch individual photons on a chip back and forth between two outputs at gigahertz frequencies. This method, demonstrated here for the first time, can now be used for acoustic quantum technologies or complex integrated photonic networks.

Light waves and soundwaves form the technological backbone of modern communications. While glass fibers with laser light form the World Wide Web, nanoscale soundwaves on chips process signals at gigahertz frequencies for wireless transmission between smartphones, tablets or laptops. One of the most pressing questions for the future is how these technologies can be extended to , to build up secure (i.e., tap-free) quantum communication networks.

“Light quanta or photons play a very central role in the development of quantum technologies,” says physicist Prof. Hubert Krenner, who heads the study in Münster and Augsburg. “Our team has now succeeded in generating on a chip the size of a thumbnail and then controlling them with unprecedented precision, precisely clocked by means of soundwaves,” he says.

Researchers have discovered the human brain’s enhanced processing power may stem from differences in the structure and function of our neurons. Credit: Queensland Brain Institute / Professor Stephen Williams.

The human brain’s function is remarkable, driving all aspects of our creativity and thoughts. However, the neocortex, a region of the human brain responsible for these cognitive functions, has a similar overall structure to other mammals.

Researchers from The University of Queensland (UQ), The Mater Hospital, and the Royal Brisbane and Women’s Hospital have shown that changes in the structure and function of our neurons may be the cause of the human brain’s increased processing power.

Gnawing on his left index finger with his chipped old British teeth, temporal veins bulging and brow pensively squinched beneath the day-before-yesterday’s hair, the mathematician John Horton Conway unapologetically whiles away his hours tinkering and thinkering — which is to say he’s ruminating, although he will insist he’s doing nothing, being lazy, playing games.

Based at Princeton University, though he found fame at Cambridge (as a student and professor from 1957 to 1987), Conway, 77, claims never to have worked a day in his life. Instead, he purports to have frittered away reams and reams of time playing. Yet he is Princeton’s John von Neumann Professor in Applied and Computational Mathematics (now emeritus). He’s a fellow of the Royal Society. And he is roundly praised as a genius. “The word ‘genius’ gets misused an awful lot,” said Persi Diaconis, a mathematician at Stanford University. “John Conway is a genius. And the thing about John is he’ll think about anything.… He has a real sense of whimsy. You can’t put him in a mathematical box.”