Toggle light / dark theme

Limitations of Linear Cross-Entropy as a Measure for Quantum Advantage

Popular Summary.

Unequivocally demonstrating that a quantum computer can significantly outperform any existing classical computers will be a milestone in quantum science and technology. Recently, groups at Google and at the University of Science and Technology of China (USTC) announced that they have achieved such quantum computational advantages. The central quantity of interest behind their claims is the linear cross-entropy benchmark (XEB), which has been claimed and used to approximate the fidelity of their quantum experiments and to certify the correctness of their computation results. However, such claims rely on several assumptions, some of which are implicitly assumed. Hence, it is critical to understand when and how XEB can be used for quantum advantage experiments. By combining various tools from computer science, statistical physics, and quantum information, we critically examine the properties of XEB and show that XEB bears several intrinsic vulnerabilities, limiting its utility as a benchmark for quantum advantage.

Concretely, we introduce a novel framework to identify and exploit several vulnerabilities of XEB, which leads to an efficient classical algorithm getting comparable XEB values to Google’s and USTC’s quantum devices (2% 12% of theirs) with just one GPU within 2 s. Furthermore, its performance features better scaling with the system size than that of a noisy quantum device. We observe that this is made possible because the XEB can highly overestimate the fidelity, which implies the existence of “shortcuts” to achieve high XEB values without simulating the system. This is in contrast to the intuition of the hardness of achieving high XEB values by all possible classical algorithms.

Scientists use food industry byproduct to recover gold from electronic waste

Transforming base materials into gold was one of the elusive goals of the alchemists of yore. Now Professor Raffaele Mezzenga from the Department of Health Sciences and Technology at ETH Zurich has accomplished something in that vein. He has not of course transformed another chemical element into gold, as the alchemists sought to do. But he has managed to recover gold from electronic waste using a byproduct of the cheesemaking process.

Electronic waste contains a variety of valuable metals, including copper, cobalt, and even significant amounts of gold. Recovering this gold from disused smartphones and computers is an attractive proposition in view of the rising demand for the precious metal.

However, the recovery methods devised to date are energy-intensive and often require the use of highly toxic chemicals. Now, a group led by ETH Professor Mezzenga has come up with a very efficient, cost-effective, and above all far more sustainable method: with a sponge made from a , the researchers have successfully extracted gold from electronic waste.

Scientists Develop a Technique to Protect a Quantum-era Metaverse

A team of Chinese scientists introduced a quantum communication technique that they say could help secure Web 3.0 against the formidable threat of quantum computing.

Their approach, called Long-Distance Free-Space Quantum Secure Direct Communication (LF QSDC), promises to improve data security by enabling encrypted direct messaging without the need for key exchange, a method traditionally vulnerable to quantum attacks.

They add the approach not only enhances security but also aligns with the decentralized ethos of Web 3.0, offering a robust defense in the rapidly evolving digital landscape.

Graphene micro supercapacitors enhance flexibility and performance in wearable technology

The proliferation of wearable devices—from smart watches to AR glasses—necessitates ever-smaller on-board energy solutions that can deliver bursts of power while remaining unobtrusive.


Scientists leverage additive-free 3D printing process to construct exceptionally customizable and high-performing graphene-based micro-supercapacitors tailored for on-chip energy storage.

The quantum world: Dreams and delusions | Roger Penrose, Sabine Hossenfelder, Michio Kaku, and more!

Watch some of the biggest names in physics debate the mysteries of the quantum and its future, including Roger Penrose, Sabine Hossenfelder, Avshalom Elitzur, Michio Kaku, Suchitra Sebastian, Priya Natarajan, Joscha Bach, Erik Verlinde, Hilary Lawson and Bjørn Ekeberg.

From string theory to quantum gravity and quantum computers, the quantum discourse is all the buzz in physics and beyond. But what is possible and what mere fantasy? Can we bring together relativity and quantum mechanics? Will we ever find a unified theory to explain our universe?

00:00 Introduction.
00:45 Why is modern physics in crisis | Roger Penrose, Sabine Hossenfelder, Priya Natarajan, Erik Verlinde.
15:44 Are we at the cusp of a revolution? | Avshalom Elitzur, Michio Kaku, Joscha Bach, Bjørn Ekerberg.
28:06 What is quantum emergence? | Suchitra Sebastian.

#quantumemergence #relativity #quantumphysics.

Debates and talks featured:
The trouble with time (London, 2023)
https://iai.tv/video/the-trouble-with
Mystery of emergence (London, 2023)
https://iai.tv/video/the-mystery-of-e
Gravity and the universe (London, 2023)
https://iai.tv/video/gravity-and-the–
Imagining the universe (Hay, 2023)
https://iai.tv/video/imagining-the-un
The secrets of quantum emergence (Hay, 2023)
https://iai.tv/video/the-secrets-of-q
The quantum hoax (Hay, 2023)
https://iai.tv/video/the-quantum-hoax
Reality models and mayhem (Hay, 2023)
https://iai.tv/video/reality-models-a
The quantum age (IAI Live, 2023)
https://iai.tv/video/the-quantum-age–
The Institute of Art and Ideas features videos and articles from cutting edge thinkers discussing the ideas that are shaping the world, from metaphysics to string theory, technology to democracy, aesthetics to genetics. Subscribe today! https://iai.tv/subscribe?utm_source=Y

For debates and talks: https://iai.tv.

/* */