Menu

Blog

Archive for the ‘computing’ category: Page 305

Dec 10, 2022

Computer vision technology startup Brodmann17 has shut down

Posted by in categories: computing, innovation

Brodmann17, an Israeli computer vision technology startup that developed a novel approach to take on a marketplace dominated by Mobileye, shut down this week. Brodmann17’s co-founder and CEO Adi Pinhas posted a message on LinkedIn announcing the move, stating that while the company would not be able to bring its products to the mass market as hoped, “we do get comfort that our innovation will hopefully influence the market thinking and others will proceed in the mission of creating safer mobility to everyone.”

In a subsequent interview, Pinhas told TechCrunch that “there is a strong feeling of sorrow as we proved the technology, there is outstanding demand and we have customers in production.

Dec 10, 2022

The Knapsack Problem & Genetic Algorithms — Computerphile

Posted by in categories: computing, genetics, information science

Tournament selection, roulette selection, mutation, crossover — all processes used in genetic algorithms. Dr Alex Turner explains using the Knapsack Problem.

https://www.facebook.com/computerphile.
https://twitter.com/computer_phile.

Continue reading “The Knapsack Problem & Genetic Algorithms — Computerphile” »

Dec 10, 2022

Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics

Posted by in categories: computing, particle physics

A team of researchers in China have developed a high-conductivity material that could greatly reduce contact resistance and Schottky barrier height within critical parts of electronic and optoelectronic microchips, paving the way for computer and digital imaging components that consume less power relative to their performance than existing chipsets.

The material, (MoS2) is so thin that it falls into a classification of two-dimensional. That is, it is grown in sheets extending in two directions, X and Y, but virtually immeasurable on a Z axis because the material is often only a single molecule or atom in height.

The team, led by Professor Dong Li and Professor Anlian Pan, College of Materials Science and Engineering at Hunan University, published their findings in Nano Research.

Dec 10, 2022

New optical computing approach offers ultrafast processing

Posted by in categories: computing, materials

Logic gates are the fundamental components of computer processors. Conventional logic gates are electronic—they work by shuffling around electrons—but scientists have been developing light-based optical logic gates to meet the data processing and transfer demands of next-generation computing.

New optical chirality developed by researchers at Aalto University operate about a million times faster than existing technologies, offering ultrafast processing speeds.

The new approach uses circularly polarized light as the . The logic gates are made from crystalline materials that are sensitive to the handedness of a circularly polarized light beam—that is, the light emitted by the crystal depends on the handedness of the input beams. This serves as the basic building block for one type of logic gate (XNOR), and the remaining types of logic gates are built by adding filters or other optical components.

Dec 10, 2022

Engineers Push Probabilistic Computing Closer to Reality

Posted by in categories: computing, engineering, information science, quantum physics

A large universal quantum computer is still an engineering dream, but machines designed to leverage quantum effects to solve specific classes of problems—such as D-wave’s computers—are alive and well. But an unlikely rival could challenge these specialized machines: computers built from purposely noisy parts.

This week at the IEEE International Electron Device Meeting (IEDM 2022), engineers unveiled several advances that bring a large-scale probabilistic computer closer to reality than ever before.

Quantum computers are unrivaled for any algorithm that relies on quantum’s complex amplitudes. “But for problems where the numbers are positive, sometimes called stochastic problems, probabilistic computing could be quite competitive,” says Supriyo Datta, professor of electrical and computer engineering at Purdue University and one of the pioneers of probabilistic computing.

Dec 9, 2022

Optical computers run a million times faster than conventional computers, study reveals

Posted by in category: computing

Jiefeng jiang/iStock.

Next generation computing needs.

Dec 9, 2022

New materials for the computer of the future

Posted by in categories: computing, particle physics

Novel materials could revolutionize computer technology. Research conducted by scientists at the Paul Scherrer Institute PSI using the Swiss Light Source SLS has reached an important milestone along this path.

Microchips are made from silicon and work on the physical principle of a semiconductor. Nothing has changed here since the first transistor was invented in 1947 in the Bell Labs in America. Ever since, researchers have repeatedly foretold the end of the silicon era—but have always been wrong.

Silicon technology is very much alive, and continues to develop at a rapid pace. The IT giant IBM has just announced the first microprocessor whose transistor structures only measure two nanometers, equivalent to 20 adjacent atoms. So what’s next? Even tinier structures? Presumably so—for this decade, at least.

Dec 9, 2022

IBM Reveals Its 433 Qubit Quantum Computer

Posted by in categories: computing, quantum physics

With the reveal of its 433 qubit quantum computer, IBM takes a large step forward in the race towards next-generation processing.

Dec 8, 2022

Meet the Unimon, the New Qubit on the Block

Posted by in categories: computing, quantum physics

In initial tests, a simplified version of a popular superconducting qubit achieves high computation accuracies, making it attractive for future quantum computers.

Dec 8, 2022

A new computational system streamlines the design of fluidic devices

Posted by in categories: biotech/medical, computing

Combustion engines, propellers, and hydraulic pumps are examples of fluidic devices—instruments that utilize fluids to perform certain functions, such as generating power or transporting water.

Because fluidic devices are so complex, they are typically developed by experienced engineers who manually design, prototype, and test each apparatus through an iterative process that is expensive, time-consuming, and labor-intensive. But with a new system, users only need to specify the locations and speeds at which fluid enters and exits the device. The computational pipeline then automatically generates an optimal design that achieves those objectives.

The system could make it faster and cheaper to design fluidic devices for all sorts of applications, such as microfluidic labs-on-a-chip that can diagnose disease from a few drops of blood or artificial hearts that could save the lives of transplant patients.