Toggle light / dark theme

A new way to erase quantum computer errors

Quantum computers of the future hold promise in solving all sorts of problems. For example, they could lead to more sustainable materials and new medicines, and even crack the hardest problems in fundamental physics. But compared to the classical computers in use today, rudimentary quantum computers are more prone to errors. Wouldn’t it be nice if researchers could just take out a special quantum eraser and get rid of the mistakes?

Reporting in the journal Nature, a group of researchers led by Caltech is among the first to demonstrate a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as “erasure” errors.

“It’s normally very hard to detect errors in quantum computers, because just the act of looking for errors causes more to occur,” says Adam Shaw, co-lead author of the new study and a graduate student in the laboratory of Manuel Endres, a professor of physics at Caltech. “But we show that with some careful control, we can precisely locate and erase certain errors without consequence, which is where the name erasure comes from.”

X-ray the nukes: How US plans nuclear safety in this underground lab

The US has relied on computer simulations since 1992 for verifying the performance of its nuclear stockpile but will soon get more realistic estimates.

Three US national defense labs are engaged in the process of building a test site, one thousand feet under the ground in Albuquerque, New Mexico, that will send powerful X-rays and verify the reliability of the country’s nuclear stockpile, a press release said.

The US nuclear program heavily relied on actual testing of warheads to determine if its stockpile could serve as a deterrent when called upon. This, however, changed in 1992, after then-President George H.W. Bush signed a law calling for a moratorium on nuclear testing.

Slow-moving quasiparticles make the fastest semiconductor in the world

It could improve limits on information transfer speed but is made of a super expensive ingredient that might make it financially infeasible.

Researchers at Columbia University in the US have developed the fastest and most efficient superconductor that works at room temperature, a press release said. The superconductor is made of superatomic material only known by its chemical formula, Re6Se8Cl2.

In a short span of time, silicon has become an integral part of most modern-day equipment ranging from cell phones to cars, computers to smart homes. However, scientists have found that silicon will soon reach its limits. This is because of the atomic structure of the semiconductor.

ALS patients control home devices with their minds using BCI

“For those who have lost their ability to communicate due to a variety of neurological conditions, there’s a lot of hope to preserve or regain their ability to communicate with family and friends.”

The term “brain-computer interface” (BCI) refers to a technology that creates a direct line of communication between the human brain and an outside object or computer system, opening up a wide range of possibilities for things like device control and neurological study.


Oonal/iStock.

Cortical Communication (CortiCom)

Scientists demonstrate electric control of atomic spin transitions

A new study published in Nature Communications delves into the manipulation of atomic-scale spin transitions using an external voltage, shedding light on the practical implementation of spin control at the nanoscale for quantum computing applications.

Spin transitions at the atomic scale involve changes in the orientation of an atom’s intrinsic angular momentum or spin. In the atomic context, spin transitions are typically associated with electron behavior.

In this study, the researchers focused on using electric fields to control the spin transitions. The foundation of their research was serendipitous and driven by curiosity.

Google antitrust case: Will Apple create its own search engine?

The trial has revealed that Google was concerned about losing its monopoly to Spotlight, an in-house search engine made by Apple.

Google and Apple compete on several fronts – operating systems, email, app stores, cloud computing, and photo apps. While Google leads in the market share of its phone operating system, Apple boasts of a line of very cool hardware tech. But they remain partners in one key area, which is also currently in the eye of the storm.

Google pays Apple for its search engine to be the default selection on iPhones. Its parent company, Alphabet, pays the iPhone maker upwards of $20 billion annually as part of the deal. In 2016, Apple reportedly was presented with a lucrative billion-dollar offer by Microsoft to replace Google with Bing in its phones. But Apple didn’t budge.

How China’s YMTC defied US sanctions with a chip breakthrough

Still, experts caution that Chinese firms remain years behind in producing the lithography systems needed to make real progress.

China’s top memory chip maker, Yangtze Memory Technologies Corp (YMTC), has achieved a “surprise” breakthrough in producing the “world’s most advanced” 3D NAND memory chip, which is used in consumer devices like laptops and smartphones, a report by TechInsights.


Breaking the US sanctions barrier

The report (via SCMP), published on Wednesday, said that YMTC’s memory chip was found in a solid-state drive (ZhiTai Ti600 1TB) launched in July without much fanfare. The chip shows that YMTC has not given up on developing cutting-edge technology despite facing US sanctions that have restricted its access to essential equipment and components.

The report also said that YMTC’s breakthrough followed another “innovation” by China’s semiconductor industry, which was revealed by TechInsights earlier. The firm analyzed the Kirin 9000S 5G processor in Huawei’s Mate 60 Pro smartphone, which was released in August. The processor was said to be made by China’s largest chip maker, SMIC, also under US sanctions. The processor impressed many analysts with its performance and features.

New research sheds light on early galaxy formation

Researchers have developed a new computer simulation of the early universe that closely aligns with observations made by the James Webb Space Telescope (JWST).

Initial JWST observations hinted that something may be amiss in our understanding of early galaxy formation. The first galaxies studied by JWST appeared to be brighter and more massive than theoretical expectations.

The findings, published in The Open Journal of Astrophysics, by researchers at Maynooth University, Ireland, with collaborators from US-based Georgia Institute of Technology, show that observations made by JWST do not contradict theoretical expectations. The so-called “Renaissance simulations” used by the team are a series of highly sophisticated computer simulations of galaxy formation in the early universe.

New quantum computing architecture achieves electron charge qubit with 0.1 millisecond coherence time

Coherence stands as a pillar of effective communication, whether it is in writing, speaking or information processing. This principle extends to quantum bits, or qubits, the building blocks of quantum computing. A quantum computer could one day tackle previously insurmountable challenges in climate prediction, material design, drug discovery and more.

A team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has achieved a major milestone toward future quantum computing. They have extended the time for their novel type of qubit to an impressive 0.1 milliseconds—nearly a thousand times better than the previous record.

The research was published in Nature Physics.

Atom Computing Says Its New Quantum Computer Has Over 1,000 Qubits

The scale of quantum computers is growing quickly. In 2022, IBM took the top spot with its 433-qubit Osprey chip. Yesterday, Atom Computing announced they’ve one-upped IBM with a 1,180-qubit neutral atom quantum computer.

The new machine runs on a tiny grid of atoms held in place and manipulated by lasers in a vacuum chamber. The company’s first 100-qubit prototype was a 10-by-10 grid of strontium atoms. The new system is a 35-by-35 grid of ytterbium atoms (shown above). (The machine has space for 1,225 atoms, but Atom has so far run tests with 1,180.)

Quantum computing researchers are working on a range of qubits—the quantum equivalent of bits represented by transistors in traditional computing—including tiny superconducting loops of wire (Google and IBM), trapped ions (IonQ), and photons, among others. But Atom Computing and other companies, like QuEra, believe neutral atoms—that is, atoms with no electric charge—have greater potential to scale.