Toggle light / dark theme

A Dive into the Thermodynamic Aspects of Quantum Computation

It is quite conventional that the working of classical computers is affected immensely by heat and one might have come across this situation in their lives when their computer failed to function properly due to excessive heating.

But what about quantum computers? Do thermodynamical factors influence the workings of a quantum computing device? Well, the answer is yes, quantum computers operate using quantum bits or qubits that essentially are in a superposed state exchanging information in binary code. An interesting fact about qubits is that they not only exchange information using 0 and 1 but also intermediate values between 0 and 1. These qubits are very sensitive, in that excessive heat generation could cause work-related defects which in a sense can cause harm to the device as a whole. Another crucial point is that in order to retrieve significant information from the qubit system, the associated quantum states must be dismantled and this could possibly impact the quantum system heavily in a negative manner as the process would be exothermic.

In recent work, physicists have investigated the thermodynamic effects caused by superconducting quantum systems [1]. The method involves the employment of a Josephson junction which essentially operates on the Josephson effect, an example of macroscopic quantum phenomena wherein a supercurrent flows between two superconductors placed end-to-end or in close proximity to each other. The principal usability of a Josephson junction is to store quantum information. Using superconductors is a plus because it helps enhance the efficiency of the qubits.

Crafting Qubits: Harnessing Quantum Mechanics for Computation

How do we actually create and manipulate qubits, essential for realizing quantum computation? Chief Scientist of Hardware Technology Development at Quantinuum, Patty Lee, joins Brian Greene to discuss various quantum strategies, their achievements to date and pathways forward.

This program is part of the Big Ideas series, supported by the John Templeton Foundation.

Participant: Patty Lee.
Moderator: Brian Greene.

00:00 — Introduction.
01:51 — Participant Introduction.
02:44 — Approaches To Quantum Computing.
07:19 — The Trapped Ion Approach In Practice.
22:58 — Obstacles In Quantum Computing.
35:14 — The Future Of Quantum Computing.
40:10 — Credits.

SUBSCRIBE to our youtube channel and \.

Welcome to The Quantum Memory Matrix — Hypothesis Offers New Insight Into Black Hole Information Paradox

A new hypothesis suggests that the very fabric of space-time may act as a dynamic reservoir for quantum information, which, if it holds, would address the long-standing Black Hole Information Paradox and potentially reshape our understanding of quantum gravity, according to a research team including scientists from pioneering quantum computing firm, Terra Quantum and Leiden University.

Published in Entropy, the Quantum Memory Matrix (QMM) hypothesis offers a mathematical framework to reconcile quantum mechanics and general relativity while preserving the fundamental principle of information conservation.

The study proposes that space-time, quantized at the Planck scale — a realm where the physics of quantum mechanics and general relativity converge — stores information from quantum interactions in “quantum imprints.” These imprints encode details of quantum states and their evolution, potentially enabling information retrieval during black hole evaporation through mechanisms like Hawking radiation. This directly addresses the Black Hole Information Paradox, which highlights the conflict between quantum mechanics — suggesting information cannot be destroyed — and classical black hole descriptions, where information appears to vanish once the black hole evaporates.

Tuning skyrmion helicity for racetrack memory and quantum computing applications

Three distinct topological degrees of freedom are used to define all topological spin textures based on out-of-plane and in-plane spin configurations: the topological charge, representing the number of times the magnetization vector m wraps around the unit sphere; the vorticity, which quantifies the angular integration of the magnetic moment along the circumferential direction of a domain wall; and the helicity, defining the swirling direction of in-plane magnetization.

Electrical manipulation of these three degrees of freedom has garnered significant attention due to their potential applications in future spintronic devices. Among these, the helicity of a magnetic skyrmion—a critical topological property—is typically determined by the Dzyaloshinskii-Moriya interaction (DMI). However, controlling skyrmion helicity remains a formidable challenge.

A team of scientists led by Professor Yan Zhou from The Chinese University of Hong Kong, Shenzhen, and Professor Senfu Zhang from Lanzhou University successfully demonstrated a controllable helicity switching of skyrmions using spin-orbit torque, enhanced by thermal effects.

Google says its new quantum chip indicates that multiple universes exist

Google on Monday announced Willow, its latest, greatest quantum computing chip. The speed and reliability performance claims Google’s made about this chip were newsworthy in themselves, but what really caught the tech industry’s attention was an even wilder claim tucked into the blog post about the chip.

Google Quantum AI founder Hartmut Neven wrote in his blog post that this chip was so mind-boggling fast that it must have borrowed computational power from other universes.

Ergo the chip’s performance indicates that parallel universes exist and “we live in a multiverse.”

Quantum computing’s next step: New algorithm boosts multitasking

Quantum computers differ fundamentally from classical ones. Instead of using bits (0s and 1s), they employ “qubits,” which can exist in multiple states simultaneously due to quantum phenomena like superposition and entanglement.

For a quantum computer to simulate dynamic processes or process data, among other essential tasks, it must translate complex input data into “quantum data” that it can understand. This process is known as quantum compilation.

Essentially, quantum compilation “programs” the quantum computer by converting a particular goal into an executable sequence. Just as the GPS app converts your desired destination into a sequence of actionable steps you can follow, quantum compilation translates a high-level goal into a precise sequence of quantum operations that the quantum computer can execute.

/* */