Menu

Blog

Archive for the ‘chemistry’ category: Page 50

Oct 6, 2023

Biocompatible focused ultrasound delivers cancer drugs on target

Posted by in categories: biotech/medical, chemistry, nanotechnology

Remote control of chemical reactions in biological environments could enable a diverse range of medical applications. The ability to release chemotherapy drugs on target in the body, for example, could help bypass the damaging side effects associated with these toxic compounds. With this aim, researchers at California Institute of Technology (Caltech) have created an entirely new drug-delivery system that uses ultrasound to release diagnostic or therapeutic compounds precisely when and where they are needed.

The platform, developed in the labs of Maxwell Robb and Mikhail Shapiro, is based around force-sensitive molecules known as mechanophores that undergo chemical changes when subjected to physical force and release smaller cargo molecules. The mechanical stimulus can be provided via focused ultrasound (FUS), which penetrates deep into biological tissues and can be applied with submillimetre precision. Earlier studies on this method, however, required high acoustic intensities that cause heating and could damage nearby tissue.

To enable the use of lower – and safer – ultrasound intensities, the researchers turned to gas vesicles (GVs), air-filled protein nanostructures that can be used as ultrasound contrast agents. They hypothesized that the GVs could function as acousto-mechanical transducers to focus the ultrasound energy: when exposed to FUS, the GVs undergo cavitation with the resulting energy activating the mechanophore.

Oct 5, 2023

Turning Back the Clock: Surgical Procedure Slows Cellular Aging and Extends Lifespan by up to 10%

Posted by in categories: biotech/medical, chemistry, life extension

A process of surgically joining the circulatory systems of a young and old mouse has been found to slow aging at a cellular level and extend the older animal’s life by as much as 10%.

Recently published in Nature Aging, a study led by researchers from Duke Health discovered the longer the animals shared circulation, the longer the anti-aging benefits lasted once the two were no longer connected.

The findings suggest that the young benefit from a cocktail of components and chemicals in their blood that contribute to vitality, and these factors could potentially be isolated as therapies to speed healing, rejuvenate the body, and add years to an older individual’s life.

Oct 5, 2023

Mouse Study Reveals Unexpected Connection Between Menthol And Alzheimer’s

Posted by in categories: biotech/medical, chemistry, health, neuroscience

A recent study reports something strange: When mice with Alzheimer’s disease inhale menthol, their cognitive abilities improve. It seems the chemical compound can stop some of the damage done to the brain that’s usually associated with the disease.

In particular, researchers noticed a reduction in the interleukin-1-beta (IL-1β) protein, which helps to regulate the body’s inflammatory response – a response that can offer natural protection but one that leads to harm when it’s not controlled properly.

The team behind the study, which was published in April 2023, says it shows the potential for particular smells to be used as therapies for Alzheimer’s. If we can figure out which odors cause which brain and immune system responses, we can harness them to improve health.

Oct 5, 2023

Quantum Dots Explained (2023 Nobel Prize in Chemistry)

Posted by in categories: biotech/medical, chemistry, computing, quantum physics, solar power

The 2023 Nobel Prize in Chemistry was awarded to three scientists who discovered and developed quantum dots, which are very small particles that can change color depending on their size. Quantum dots are tiny particles of a special kind of material called a semiconductor. They are so small that they behave differently from normal materials. They can absorb and emit light of different colors depending on their size and shape.

You can think of quantum dots as artificial atoms that can be made in a lab! They have some of the same properties as atoms, such as having discrete energy levels (meaning they can only exist in certain distinct energy states, and they cannot have energy values between these specific levels) and being able to form molecules with other quantum dots. But they also have some unique features that make them useful for many applications, such as displays, solar cells, sensors, and medicine, which I shall discuss later in this story!

To grasp the workings of quantum dots, a bit of quantum mechanics knowledge comes in handy. Quantum mechanics teaches us that these tiny entities can possess only specific amounts of energy, and they transition between these energy levels by absorbing or emitting light. The energy of this light is determined by the difference in energy levels. In typical materials like metals or plastics, energy levels are closely packed, forming continuous bands where electrons can move freely, resulting in less specific light absorption or emission. However, in semiconductors like silicon or cadmium selenide, there’s a gap between these bands known as the “band gap.” Electrons can only jump from one band to another by interacting with light having an energy level that precisely matches the band gap, making semiconductors valuable for creating devices like transistors and LEDs.

Oct 5, 2023

Chemistry Nobel Prize goes to quantum dots that guide surgeons

Posted by in categories: biotech/medical, chemistry, nanotechnology, quantum physics

From LED lights to medical imaging, quantum dots have many varied applications.

The creation of quantum dots earned its developers the Nobel Prize in Chemistry 2023, an invention that could have also been a contender for the Physics Prize. These tiny elements of nanotechnology, which are so miniature that their size dictates their properties, are today used in many useful and practical applications and have even been reported to direct surgeons as they tackle tricky tumor tissue.


Nobel Prize/Twitter.

Continue reading “Chemistry Nobel Prize goes to quantum dots that guide surgeons” »

Oct 5, 2023

Creation of quantum dots wins 2023 chemistry Nobel

Posted by in categories: biotech/medical, chemistry, quantum physics

The award honors three scientists who discovered and built quantum dots, which are now used in everything from TVs to medical tools.

Oct 5, 2023

Scientists illuminate the mechanics of solid-state batteries

Posted by in categories: chemistry, energy

As current courses through a battery, its materials erode over time. Mechanical influences such as stress and strain affect this trajectory, although their impacts on battery efficacy and longevity are not fully understood.

A team led by researchers at the Department of Energy’s Oak Ridge National Laboratory developed a framework for designing solid-state batteries, or SSBs, with mechanics in mind. Their paper, published in Science, reviewed how these factors change SSBs during their cycling.

“Our goal is to highlight the importance of mechanics in performance,” said Sergiy Kalnaus, a scientist in ORNL’s Multiphysics Modeling and Flows group. “A lot of studies have focused on chemical or electric properties but have neglected to show the underlying mechanics.”

Oct 4, 2023

The Nobel Prize in Chemistry 2023

Posted by in categories: biotech/medical, chemistry, quantum physics

Moungi G. Bawendi, Louis E. Brus and Alexei I. Ekimov are awarded the Nobel Prize in Chemistry 2023 for the discovery and development of quantum dots. These tiny particles have unique properties and now spread their light from television screens and LED lamps. They catalyse chemical reactions and their clear light can illuminate tumour tissue for a surgeon.

“Toto, I’ve a feeling we’re not in Kansas anymore,” is a classic quote from the film The Wizard of Oz. Twelve-year-old Dorothy faints onto her bed when her house is swept away by a powerful tornado, but when the house lands again and she steps outside the door, her dog Toto in her arms, everything has changed. Suddenly she is in a magical, technicolour world.

If an enchanted tornado were to sweep into our lives and shrink everything to nano dimensions, we would almost certainly be as astonished as Dorothy in the land of Oz. Our surroundings would be dazzlingly colourful and everything would change. Our gold earrings would suddenly glimmer in blue, while the gold ring on our finger would shine a ruby red. If we tried to fry something on the gas hob, the frying pan might melt. And our white walls – whose paint contains titanium dioxide – would start generating lots of reactive oxygen species.

Oct 4, 2023

Using Nanoparticles to Treat Cancer

Posted by in categories: biotech/medical, chemistry, nanotechnology

PhD candidate at UniSA’s Applied Chemistry and Translational Biomaterials (ACTB) Group, Cintya Dharmayanti, has taken out UniSA’s 2021 Three Minute Thesis (3MT) with a condensed presentation of her research about developing nanoparticles for cancer treatment, potentially leading to more effective treatments and reduced side effects. She will be competing in the 2023 FameLab National Finals with a presentation titled, “Behind enemy lines: Tiny assassins in the war against cancer.

For more from University of South Australia visit: https://www.unisa.edu.au/connect/alumni-network/alumni-news/…Track=true.

Continue reading “Using Nanoparticles to Treat Cancer” »

Oct 4, 2023

A special molecule that violates the laws of physics could lead to limitless energy

Posted by in categories: chemistry, energy, physics

Scientists may have made a major breakthrough in the quest to produce limitless energy. According to a new study published in the journal American Chemical Society, scientists are looking deeper at a molecule known as azulene, which is a blue-light emitting molecule that seems to flout the fundamental rules of photochemistry.

Sign up for the most interesting tech & entertainment news out there.

Page 50 of 300First4748495051525354Last