Toggle light / dark theme

Sustainable method produces high-purity material for use in green hydrogen production

A group of researchers affiliated with the Center for Innovation in New Energies (CINE) has developed a method for purifying materials that is simple, economical and has a low environmental impact. The scientists have managed to improve the efficiency of a film that can be used in some green hydrogen production processes.

Known as mullite-type bismuth ferrite (Bi₂Fe₄O₉), the material has been used as a photoelectrocatalyst in the production of hydrogen by photoelectron oxidation, a process in which molecules of water or biomass derivatives are oxidized using sunlight as an energy source. The role of bismuth ferrite films in this process is to absorb light and drive the electrochemical reactions that “separate” the hydrogen from the original molecules (water, glycerol, ethanol, etc.).

However, the performance of these photoelectrocatalysts has been limited in the production of hydrogen due, among other factors, to the presence of unwanted compounds in the material itself, known as secondary phases. Now, research carried out by CINE members in the laboratories of the State University of Campinas (UNICAMP) in Brazil has brought a solution to the problem: a purification method that has managed to eliminate these unwanted compounds.

The Enigmatic Machine: Decoding AI’s Black Box Phenomenon

In the domain of artificial intelligence, human ingenuity has birthed entities capable of feats once relegated to science fiction. Yet within this triumph of creation resides a profound paradox: we have designed systems whose inner workings often elude our understanding. Like medieval alchemists who could transform substances without grasping the underlying chemistry, we stand before our algorithmic progeny with a similar mixture of wonder and bewilderment. This is the essence of the “black box” problem in AI — a philosophical and technical conundrum that cuts to the heart of our relationship with the machines we’ve created.

The term “black box” originates from systems theory, where it describes a device or system analyzed solely in terms of its inputs and outputs, with no knowledge of its internal workings. When applied to artificial intelligence, particularly to modern deep learning systems, the metaphor becomes startlingly apt. We feed these systems data, they produce results, but the transformative processes occurring between remain largely opaque. As Pedro Domingos (2015) eloquently states in his seminal work The Master Algorithm: “Machine learning is like farming. The machine learning expert is like a farmer who plants the seeds (the algorithm and the data), harvests the crop (the classifier), and sells it to consumers, without necessarily understanding the biological mechanisms of growth” (p. 78).

This agricultural metaphor points to a radical reconceptualization in how we create computational systems. Traditionally, software engineering has followed a constructivist approach — architects design systems by explicitly coding rules and behaviors. Yet modern AI systems, particularly neural networks, operate differently. Rather than being built piece by piece with predetermined functions, they develop their capabilities through exposure to data and feedback mechanisms. This observation led AI researcher Andrej Karpathy (2017) to assert that “neural networks are not ‘programmed’ in the traditional sense, but grown, trained, and evolved.”

Advances in ceramic electrochemical cells promise more reliable hydrogen production and clean energy storage

Researchers from the University of Oklahoma have made significant advances in a promising technology for efficient energy conversion and chemical processing. Two recent studies involving protonic ceramic electrochemical cells, called PCECs, address significant challenges in electrochemical manufacturing and efficiency. These innovations are a crucial step toward reliable and affordable solutions for hydrogen production and clean energy storage.

The studies were led by Hanping Ding, Ph.D., an assistant professor in the School of Aerospace and Mechanical Engineering at the University of Oklahoma.

PCECs have traditionally struggled to maintain performance under the required for commercial use. In a study featured in Nature Synthesis, Ding and his colleagues reported a new approach that eliminates the need for cerium-based materials, which are prone to breakdown under high steam and heat.

Scientists hail new ‘industrially viable technology’ that can squeeze hydrogen from seawater

Researchers from the University of Sharjah claim to have developed a novel technology capable of producing clean hydrogen fuel directly from seawater, and at an industrial scale.

In a study published in the journal Small, the researchers report that they extracted without the need to remove the mineral salts dissolved in seawater or add any chemicals.

According to the authors, the technology enables hydrogen extraction from seawater without relying on , which require massive investments totaling hundreds of millions of dollars.

New quantum gravity discovery could unite quantum mechanics and relativity

Two recent advances—one in nanoscale chemistry and another in astrophysics—are making waves. Scientists studying the movement of molecules in porous materials and researchers observing rare cosmic events have uncovered mechanisms that could reshape both industry and our view of the universe.

One of the most promising fields in material science centers on molecular diffusion. This is the way molecules move through small, confining spaces—a key process behind technologies like gas separation, catalysis, and energy storage. Materials called MOFs, short for metal-organic frameworks, have emerged as powerful tools because of their flexible structure and tunable chemistry.

Yet predicting how molecules behave inside these frameworks isn’t simple. Pore size, shape, chemical reactivity, and even how the material flexes all play a role. Studying these factors one by one has been manageable. But understanding how they work together to control molecular flow remains a major hurdle for material designers.

Water-assisted microwave synthesis of porous COF materials for lithium-ion batteries

In our recent study published in the Journal of the American Chemical Society, our team from the National University of Singapore has developed a rapid and eco-friendly method for synthesizing imide-linked covalent organic frameworks (COFs) using a water-assisted microwave approach.

This innovative technique significantly reduces the synthesis time and eliminates the need for toxic organic solvents, marking a major advancement in the field of materials science.

Record-setting lithium-ion conductors: Researchers develop new material for solid-state batteries

Researchers at TUM and TUMint. Energy Research have taken a significant step towards improving solid-state batteries. They developed a new material made of lithium, antimony and scandium that conducts lithium ions more than 30% faster than any previously known material. The work is published in the journal Advanced Energy Materials.

The team led by Prof. Thomas F. Fässler from the Chair of Inorganic Chemistry with a Focus on Novel Materials partially replaced lithium in a lithium antimonide compound with the metal scandium. This creates specific gaps, so-called vacancies, in the crystal lattice of the conductor material. These gaps help the lithium ions to move more easily and faster, resulting in a new world record for ion conductivity.

Since the measured conductivity far exceeded that of existing materials, the team collaborated with the Chair of Technical Electrochemistry under Prof. Hubert Gasteiger at TUM to confirm the result.

Scientists develop next-gen energy storage technologies that enable high power and capacity simultaneously

A research team has developed a high-performance supercapacitor that is expected to become the next generation of energy storage devices. With details published in the journal Composites Part B: Engineering, the technology developed by the researchers overcomes the limitations of existing supercapacitors by utilizing an innovative fiber structure composed of single-walled carbon nanotubes (CNTs) and the conductive polymer polyaniline (PANI).

Compared to conventional batteries, supercapacitors offer faster charging and higher power density, with less degradation over tens of thousands of charge and discharge cycles. However, their relatively low energy density limits their use over long periods of time, which has limited their use in practical applications such as and drones.

Researchers led by Dr. Bon-Cheol Ku and Dr. Seo Gyun Kim of the Carbon Composite Materials Research Center at the Korea Institute of Science and Technology (KIST) and Professor Yuanzhe Piao of Seoul National University (SNU), uniformly chemically bonded single-walled carbon nanotubes (CNTs), which are highly conductive, with polyaniline (PANI), which is processable and inexpensive, at the nanoscale.

Oxygen-stable biocatalyst from a thermophilic bacterium could boost hydrogen production

In the absence of air, microorganisms produce hydrogen using an enzyme called [FeFe]-hydrogenase, one of the most efficient hydrogen-producing biocatalysts known and a promising tool for green hydrogen energy. However, these enzymes are rapidly destroyed when exposed to air, which has so far limited their industrial use.

Now, joint efforts led by scientists from the Photobiotechnology group and the Center for Theoretical Chemistry at Ruhr University Bochum, Germany, have isolated a new type of oxygen-stable [FeFe]-hydrogenase and revealed its “tricks” for this oxygen-stability.

The results are published in the Journal of the American Chemical Society.

/* */