Toggle light / dark theme

The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review

The healthcare industry faces a significant shift towards digital health technology, with a growing demand for real-time and continuous health monitoring and disease diagnostics [1, 2, 3]. The rising prevalence of chronic diseases, such as diabetes, heart disease, and cancer, coupled with an aging population, has increased the need for remote and continuous health monitoring [4, 5, 6, 7]. This has led to the emergence of artificial intelligence (AI)-based wearable sensors that can collect, analyze, and transmit real-time health data to healthcare providers so that they can make efficient decisions based on patient data. Therefore, wearable sensors have become increasingly popular due to their ability to provide a non-invasive and convenient means of monitoring patient health. These wearable sensors can track various health parameters, such as heart rate, blood pressure, oxygen saturation, skin temperature, physical activity levels, sleep patterns, and biochemical markers, such as glucose, cortisol, lactates, electrolytes, and pH and environmental parameters [1, 8, 9, 10]. Wearable health technology includes first-generation wearable technologies, such as fitness trackers, smartwatches, and current wearable sensors, and is a powerful tool in addressing healthcare challenges [2].

The data collected by wearable sensors can be analyzed using machine learning (ML) and AI algorithms to provide insights into an individual’s health status, enabling early detection of health issues and the provision of personalized healthcare [6,11]. One of the most significant advantages of AI-based wearable health technology is to promote preventive healthcare. This enables individuals and healthcare providers to proactively address symptomatic conditions before they become more severe [12,13,14,15]. Wearable devices can also encourage healthy behavior by providing incentives, reminders, and feedback to individuals, such as staying active, hydrating, eating healthily, and maintaining a healthy lifestyle by measuring hydration biomarkers and nutrients.

Oxygen discovered in most distant known galaxy

Two different teams of astronomers have detected oxygen in the most distant known galaxy, JADES-GS-z14-0. The discovery, reported in two separate studies, was made possible thanks to the Atacama Large Millimeter/submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner. This record-breaking detection is making astronomers rethink how quickly galaxies formed in the early universe.

Discovered last year, JADES-GS-z14-0 is the most distant confirmed galaxy ever found: it is so far away, its light took 13.4 billion years to reach us, meaning we see it as it was when the universe was less than 300 million years old, about 2% of its present age.

The new oxygen detection with ALMA, a telescope array in Chile’s Atacama Desert, suggests the galaxy is much more chemically mature than expected.

FAST detects new ultra-faint dwarf galaxy

Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), Chinese astronomers have detected a new ultra-faint dwarf galaxy, which turned out to be gas-rich. The finding was reported in a research paper published March 12 on the preprint server arXiv.

The so-called ultra-faint dwarf (UFDs) are the least luminous, most –dominated, and least chemically evolved galaxies known. Therefore, they are perceived by astronomers as the best candidate fossils from the universe at its early stages.

A team of astronomers led by Jin-Long Xu of the Chinese Academy of Sciences (CAS) is carrying out a FAST extragalactic H I (neutral atomic hydrogen) survey (FASHI). One of the objectives of this survey is to search for dark and weak galaxies. Now, they report the finding of a new UFD as part of this project.

Light chemistry could lead to better medicines

“We have found a key to controlling the switching on and off of proteins by combining photochemistry and hydrolysis,” says KTH researcher Tove Kivijärvi.

When designing materials that aim to improve medicine, you need to be able to control the functions of the material in a very precise way. If this is achieved, cell environments similar to the human body can be created in the lab, which is important for understanding biological mechanisms, disease processes and how the body repairs itself. Biological materials can also be used to study how drugs work and to streamline drug testing and preclinical studies.

Fighting coastal erosion with electricity

New research from Northwestern University has systematically proven that a mild zap of electricity can strengthen a marine coastline for generations—greatly reducing the threat of erosion in the face of climate change and rising sea levels.

In the new study, researchers took inspiration from clams, mussels and other shell-dwelling sea life, which use dissolved minerals in seawater to build their shells.

Similarly, the researchers leveraged the same naturally occurring, dissolved minerals to form a natural cement between sea-soaked grains of sand. But, instead of using metabolic energy like mollusks do, the researchers used to spur the chemical reaction.

Scientists gain insight into RNA-editing protein that could lead to improved treatment for cancer, autoimmune diseases

A research team led by Rice University’s Yang Gao has uncovered new insights into the molecular mechanisms of ADAR1, a protein that regulates ribonucleic acid (RNA) induced immune responses. Their findings, published in Molecular Cell March 17, could open new pathways for treating autoimmune diseases and enhancing cancer immunotherapy.

ADAR1 converts adenosine to inosine in double-stranded RNA, a process essential for preventing unwarranted immune responses, yet the molecular basis of this editing had remained unclear. Through detailed biochemical profiling and structural analysis, researchers found that ADAR1’s editing activity depends on RNA sequence, duplex length and mismatches near the editing site. High-resolution structures of ADAR1 bound to RNA reveal its mechanisms for RNA binding, substrate selection and dimerization.

“Our study provides a comprehensive understanding of how ADAR1 recognizes and processes RNA,” said Gao, assistant professor of biosciences and a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar. “These insights pave the way for novel therapeutic strategies targeting ADAR1-related diseases.”

Never-Before-Seen: UCLA Physicists Discover Mysterious Spiral Patterns on Solid Surfaces

A curiosity about tiny dots on a germanium wafer with metal films led to the discovery of intricate spiral patterns etched by a chemical reaction. Further experiments revealed that these patterns emerge from chemical reactions interacting with mechanical forces through a deforming catalyst. This breakthrough marks the most significant advance in studying chemical pattern formation since the 1950s. Understanding these complex systems could shed light on natural processes like crack formation in materials and the effects of stress on biological growth.

University of California, Los Angeles doctoral student Yilin Wong noticed tiny dots appearing on one of her samples, which had been accidentally left out overnight. The layered sample consisted of a germanium wafer topped with evaporated metal films in contact with a drop of water. On a whim, she examined the dots under a microscope and couldn’t believe her eyes. Beautiful spiral patterns had been etched into the germanium surface by a chemical reaction.

Wong’s curiosity led her on a journey of discovery, revealing something never seen before: hundreds of nearly identical spiral patterns spontaneously forming on a centimeter-square germanium chip. Even more remarkably, small changes in experimental parameters, such as the thickness of the metal film, produced different patterns, including Archimedean spirals, logarithmic spirals, lotus flower shapes, radially symmetric patterns, and more.

New Heavy Metal Molecule Could Reveal What Goes on Inside Nuclear Waste

Since it was first synthesized in a post-WW2 American lab in 1949, berkelium has been a rebel of the periodic table, defying quantum mechanics and taking on an extra positive charge that its relatives would never.

Now, a team of scientists from berkelium’s alma mater, Lawrence Berkeley National Laboratory, has wrangled the elusive element into a rare partnership with carbon that will enable them to study it in more detail.

Thanks to challenges involved in producing and safely containing the heavy element, few chemists have had the privilege of dealing with berkelium. Just one gram of the stuff can cost a boggling US$27 million. For this experiment, just 0.3 milligrams of berkelium-249 was required.

Electrons travel one of two routes in nano-biohybrid systems

Peanut butter and jelly. Simon and Garfunkel. Semiconductors and bacteria. Some combinations are more durable than others. In recent years, an interdisciplinary team of Cornell researchers has been pairing microbes with the semiconductor nanocrystals known as quantum dots, with the goal of creating nano-biohybrid systems that can harvest sunlight to perform complex chemical transformations for materials and energy applications.

Now, the team has for the first time identified exactly what happens when a microbe receives an electron from a quantum dot: The charge can either follow a direct pathway or be transferred indirectly via the microbe’s shuttle molecules.

The findings are published in Proceedings of the National Academy of Sciences. The lead author is Mokshin Suri.

/* */