Toggle light / dark theme

Molecules of the rare metallic element niobium can be used as molecular building blocks to design electrochemical energy storage materials. Mark Rambaran, Department of Chemistry at Umeå University, presents in his thesis a method for producing solid materials from aqueous solutions containing nano-sized niobium molecules, called polyoxoniobates.

“These polyoxoniobates are water-soluble and can be synthesized in large volumes. They act as , in the same way as when a child stacks Lego bricks,” Mark Rambaran says. “They can be used to make a wide range of materials, including supercapacitors that facilitate lithium-ion storage.”

Synthesis of polyoxoniobates can be done with microwave irradiation, because it is a rapid and efficient alternative to conventional hydrothermal methods, Mark Rambaran shows in his thesis.

There has been a lot of buzz about quantum computers and for good reason. The futuristic computers are designed to mimic what happens in nature at microscopic scales, which means they have the power to better understand the quantum realm and speed up the discovery of new materials, including pharmaceuticals, environmentally friendly chemicals, and more. However, experts say viable quantum computers are still a decade away or more. What are researchers to do in the meantime?

A new Caltech-led study in the journal Science describes how tools, run on , can be used to make predictions about and thus help researchers solve some of the trickiest physics and chemistry problems. While this notion has been shown experimentally before, the new report is the first to mathematically prove that the method works.

“Quantum computers are ideal for many types of physics and materials science problems,” says lead author Hsin-Yuan (Robert) Huang, a graduate student working with John Preskill, the Richard P. Feynman Professor of Theoretical Physics and the Allen V. C. Davis and Lenabelle Davis Leadership Chair of the Institute for Quantum Science and Technology (IQIM). “But we aren’t quite there yet and have been surprised to learn that classical machine learning methods can be used in the meantime. Ultimately, this paper is about showing what humans can learn about the physical world.”

Strenuous cognitive work leads to an accumulation of glutamate in the prefrontal cortex, according to new research published in the journal Current Biology. The new findings suggest that mental fatigue is a neuropsychological mechanism that helps to avert the build up of potentially toxic byproducts of prolonged cognitive activity.

“Nobody knows what mental fatigue is, how it is generated and why we feel it,” said study author Antonius Wiehler, a member of the Motivation, Brain and Behavior Lab at Pitié Salpêtrière Hospital in Paris. “It has remained a mystery despite more than a century of scientific research. Machines can do cognitive tasks continuously without fatigue, the brain is different and we wanted to understand how and why. Mental fatigue has important consequences: for economic decisions, for management at work, for education at school, for clinical cure, etc.”

The researchers were particularly interested in the role of glutamate, an excitatory neurotransmitter that is involved in a variety of cognitive functions, including learning and memory. In addition, glutamate plays a role in controlling the strength of synaptic connections. Too much or too little glutamate can lead to neuronal dysfunction, so it is critical that this neurotransmitter is tightly regulated.

For Physics & Chemistry experiments for kids delivered to your door head to https://melscience.com/sBIs/ and use promo code DRBECKY50 for 50% off the first month of any subscription (valid until 22nd October 2022).

To find out whether you can see the partial solar eclipse on 25th October 2022 put in your location here: https://www.timeanddate.com/eclipse/map/2022-october-25

To watch the next launch attempt for Artemis live at 6pm EST on Tuesday 27th September head to @NASA ‘s YouTube channel here: https://www.youtube.com/watch?v=CMLD0Lp0JBg.
To watch the DART mission impact live on Monday 26th September 2022 head to @NASA ‘s YouTube channel here: https://www.youtube.com/watch?v=4RA8Tfa6Sck.
My previous video on the DART mission: https://youtu.be/ZBhTtaTGhao.
My previous video on whether aliens exist (inc. Drake equation): https://www.youtube.com/watch?v=fihVzPl7Dys.
My previous Night Sky News debunking these JWST Big Bang Theory claims: https://www.youtube.com/watch?v=Fqfap3v0xxw.
My previous video chatting with Dr. Libby Jones about being in control of JWST: https://www.youtube.com/watch?v=UPO8pw8r7ak.
My previous video on the discovery of the star Earendel: https://www.youtube.com/watch?v=VChgsXbIgdw.
Welch et al. (2022; Earendel imaged with JWST — not peer reviewed) — https://arxiv.org/pdf/2208.09007.pdf.
Welch et al. (2022; Earendel discovered with HST — behind pay wall) — https://www.nature.com/articles/s41586-022-04449-y.
Carter et al. (2022; JWST direct image exoplanet HIP 65426b — not peer reviewed) — https://arxiv.org/pdf/2208.14990.pdf.
El Baldry et al. (2022; a black hole orbiting a Sun-like star — not peer reviewed) — https://arxiv.org/pdf/2209.06833.pdf.

PDRs4ALL project (that imaged the Orion nebula with JWST) — https://pdrs4all.org/

00:00 — Introduction.
00:40 — Fireball meteor across Ireland & Scotland.
01:35 — Draconids & Orionids Meteor Shower.
03:05 — Mars, Jupiter & Saturn visible right now.
03:39 — Jupiter at Opposition 26th September.
04:27 — Partial Solar Eclipse 25th October 2022
06:13 — Artemis launch rescheduled.
07:08 — DART mission asteroid impact imminent.
07:48 — RIP Frank Drake 1930–2022
08:25 — JWST misinformation AGAIN
09:39 — JWST confirms Earendel is a star (or binary star system)
13:31 — JWST’s first direct image of an exoplanet HIP 65426b explained.
17:07 — JWST observes Orion nebula.
19:39 — New candidate for closest black hole (its orbiting a Sun-like star too!)
23:59 — Outro.
24:26 — MEL science.
26:17 — Bloopers.

📚 My new book, “A Brief History of Black Holes”, out NOW in hardback, e-book and audiobook (which I narrated myself!) Note, USA & Canada hardback out 1st November 2022: http://hyperurl.co/DrBecky.

Small but mighty, lysosomes play a surprisingly important role in cells despite their diminutive size. Making up only 1–3% of the cell by volume, these small sacs are the cell’s recycling centers, home to enzymes that break down unneeded molecules into small pieces that can then be reassembled to form new ones. Lysosomal dysfunction can lead to a variety of neurodegenerative or other diseases, but without ways to better study the inner contents of lysosomes, the exact molecules involved in diseases—and therefore new drugs to target them—remain elusive.

A new method, reported in Nature on Sept. 21, allows scientists to determine all the molecules present in the lysosomes of any cell in mice. Studying the contents of these molecular recycling centers could help researchers learn how the improper degradation of cellular materials leads to certain diseases. Led by Stanford University’s Monther Abu-Remaileh, institute scholar at Sarafan ChEM-H, the study’s team also learned more about the cause for a currently untreatable neurodegenerative known as Batten disease, information that could lead to new therapies.

“Lysosomes are fascinating both fundamentally and clinically: they supply the rest of the cell with nutrients, but we don’t always know how and when they supply them, and they are the places where many diseases, especially those that affect the brain, start,” said Abu-Remaileh, who is an assistant professor of chemical engineering and of genetics.

Maximizing Benefits Of The Life Sciences & Health Tech For All Americans — Dr. Andrew Hebbeler, Ph.D., Principal Assistant Director for Health and Life Sciences, Office of Science and Technology Policy, The White House.


Dr. Andrew Hebbeler, Ph.D., is Principal Assistant Director for Health and Life Sciences, Office of Science and Technology Policy at The White House (https://www.whitehouse.gov/ostp/ostps-teams/health-and-life-sciences/), and has extensive foreign affairs, national security, global health, and science and technology (S&T) policy experience.

Most recently, Dr. Hebbeler was Senior Director and Lead Scientist for Global Biological Policy and Programs at the non-profit Nuclear Threat Initiative and previous to that served in leadership positions at the State Department’s offices of Science and Technology Cooperation (OES/STC), the Science and Technology Adviser to the Secretary of State (E/STAS), and Cooperative Threat Reduction (ISN/CTR).

From 2013–2015, Dr. Hebbeler was Assistant Director for Biological and Chemical Threats at the Obama White House Office of Science and Technology Policy where he oversaw American S&T efforts to combat infectious disease and chemical weapon threats.

Prior to his White House position, Dr. Hebbeler led the State Department’s Biosecurity Engagement Program, a $40M program that prevents terrorist access to potentially dangerous biological materials and dual-use infrastructure and expertise, while supporting efforts to combat infectious disease and enhance public and animal health worldwide.

Recovery of the Antarctic ozone layer is anticipated to take place sometime around 2070.

The depletion of the ozone layer had a huge impact on humanity for a while. Moreover, the United Nations accepted The International Day for the Preservation of the Ozone Layer in 1994.

Every living thing on Earth is shielded from UV radiation by the stratospheric ozone layer. Thus, the Ozone Layer is vital for all forms of life, and we need to protect it without a doubt.

The genetic encoding of ncAAs with distinct chemical, biological, and physical properties requires the engineering of bioorthogonal translational machinery, consisting of an evolved aminoacyl-tRNA synthetase/tRNA pair and a “blank” codon. To achieve this, the researchers mimicked the ibis’ ability to synthesize sTyr and incorporate it into proteins.

The Xiao lab employed a mutant amber stop codon to encode the desired sulfotransferase, resulting in a completely autonomous mammalian cell line capable of biosynthesizing sTyr and incorporating it with great precision into proteins.

These engineered cells, the authors wrote, can produce “site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature.” They used the cells to prepare highly potent thrombin inhibitors with site-specific sulfation.

The word “intriguing” is being used to describe Perseverance results coming from sedimentary rocks on Mars that are of the same type known for preserving fossils and evidence of life here on Earth.


When NASA landed the Perseverance rover on Mars complete with an instrument package capable of identifying organic molecules, the Agency chose the Jezero Crater, the site of an ancient water-formed delta dating back 3.5 billion Earth years. The goal was to look for signs of ancient Martians, not the Martians of H.G. Wells’ “War of the Worlds,” but rather microorganisms like the ones that killed off the Martians after they arrived.

Onboard Perseverance is an instrumentation package that goes by the acronym SHERLOC which stands for Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals. Using SHERLOC, Perseverance has been sampling sedimentary rocks laid down by the water that flowed on the Martian surface earlier in its history.

What does the presence of organic molecules in samples tell us about the existence of past or present life on Mars? Although organic molecules may form from chemical processes where life is not present, it usually is a good sign of its existence. And Perseverance isn’t the first Martian lander or rover to discover organic molecules. The Viking landers, and now defunct rovers, Spirit, and Opportunity, have all indicated that Mars could or did harbour life in the past. Curiosity, the other active Martian rover in the Gale Crater has made similar discoveries. The difference between the two rovers, however, is one of both quantity and quality when looking at the Perseverance samples. Perseverance has found far more organic molecules than its sister rover and is caching the samples for a future mission to find, gather and return to Earth for study.

Recent advancements in the development of machine learning and optimization techniques have opened new and exciting possibilities for identifying suitable molecular designs, compounds, and chemical candidates for different applications. Optimization techniques, some of which are based on machine learning algorithms, are powerful tools that can be used to select optimal solutions for a given problem among a typically large set of possibilities.

Researchers at Colorado State University and the National Renewable Energy Laboratory have been applying state-of-the-art molecular optimization models to different real-world problems that entail identifying new and promising molecular designs. In their most recent study, featured in Nature Machine Intelligence, they specifically applied a newly developed, open-source optimization framework to the task of identifying viable organic radicals for aqueous flow batteries, energy devices that convert into electricity.

“Our project was funded by an ARPA-E program that was looking to shorten how long it takes to develop new energy materials using machine learning techniques,” Peter C. St. John, one of the researchers who carried out the study, told TechXplore. “Finding new candidates for redox flow batteries was an interesting extension of some of our previous work, including a paper published in Nature Communications and another in Scientific Data, both looking at organic radicals.”