Toggle light / dark theme

Scientists Identify “Pioneer Peptide” That May Have Sparked Life on Earth

A team of Rutgers University scientists dedicated to pinpointing the primordial origins of metabolism – a set of core chemical reactions that first powered life on Earth – has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.

The research, published on March 10 in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Single-atom vibrational spectroscopy now sensitive at the level of chemical bonds

Researchers led by Prof. Zhou Wu from the University of Chinese Academy of Sciences (UCAS) and Prof. Sokrates T. Pantelides of Vanderbilt University have pushed the sensitivity of single-atom vibrational spectroscopy to the chemical-bonding-configuration extreme, which is critical for understanding the correlation of lattice vibrational properties with local atomic configurations in materials.

Using a combination of experimental and theoretical approaches, the researchers demonstrated the effect of chemical-bonding configurations and the atomic mass of impurity atoms on local vibrational properties at the single-atom level.

The study was published in Nature Materials.

‘Inkable’ nanomaterial promises big benefits for bendable electronics

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

The material, , could be incorporated into many components of future technologies including mobile phones and computers, thanks to its versatility and recent advances in nanotechnology, according to the team.

RMIT University’s Associate Professor Enrico Della Gaspera and Dr. Joel van Embden led a team of global experts to review production strategies, capabilities and potential applications of zinc oxide nanocrystals in the journal Chemical Reviews.

Artificial neurons may repair damaged cells and circuits

Electronic neurons made from silicon mimic brain cells and could be used to treat autism1.

Researchers plan to use the technology in conjunction with machine learning to retrain damaged or atypical neurons and restore function in the brains of people with Alzheimer’s disease, autism or other conditions.

Another team attempted to make artificial neurons in 2015 from a conductive organic chemical, but that version oversimplified brain signaling and was too large to implant in a human brain2.

Protecting Infrastructure

Year 2022 Basically this mechanoluminescence material can bring illumination to the mysterious info of stress in infrastructure so there could eventually be an easier way to measure aging infrastructure.


Both in Japan and other developed countries, social infrastructure built during periods of rapid economic growth is rapidly aging, and accidents involving aging infrastructure are becoming more frequent. The useful life of infrastructure is considered to be about 50 years due to the deterioration of concrete, a key component. Concrete eventually cracks due to internal chemical reactions and external forces, and so-called “moving cracks” that are gradually progressing due to the constant application of force are particularly dangerous. However, finding such cracks is a difficult task that requires significant time and effort. That’s why Nao Terasaki, a team leader at the National Institute of Advanced Industrial Science and Technology (AIST), and his colleagues have developed a luminescent material that helps reveal dangerous cracks by making them glow.

Dr. Emily Osborne Ph.D. — Research Scientist — Ocean Chemistry and Ecosystems Division — NOAA/AOML

Studying Our Ocean’s History To Understanding Its Future — Dr. Emily Osborne, PhD, Ocean Chemistry & Ecosystems Division, National Oceanic and Atmospheric Administration (NOAA)


Dr Emily Osborne, Ph.D. (https://www.aoml.noaa.gov/people/emily-osborne/) is a Research Scientist, in the Ocean Chemistry and Ecosystems Division, at the Atlantic Oceanographic and Meteorological Laboratory.

The Atlantic Oceanographic and Meteorological Laboratory (AOML), a federal research laboratory, is part of the National Oceanic and Atmospheric Administration’s (NOAA) Office of Oceanic and Atmospheric Research (OAR), located in Miami in the United States. AOML’s research spans tropical cyclone and hurricanes, coastal ecosystems, oceans and human health, climate studies, global carbon systems, and ocean observations. It is one of ten NOAA Research Laboratories.

With a B.S. in Geology from the College of Charleston and a Ph.D. in Marine Science from University of South Carolina, Dr. Osborne is currently involved in investigating regional and global biogeochemical issues related to ocean health and climate through the use of a combination of paleoceanographic approaches, new autonomous sensors, and conventional measurements on large multi-disciplinary oceanographic cruises.

Paleoceanography is the study of the history of the oceans in the geologic past with regard to circulation, chemistry, biology, geology and patterns of sedimentation and biological productivity. Paleoceanographic studies using environment models and different proxies enable the scientific community to assess the role of the oceanic processes in the global climate by the re-construction of past climate at various intervals.

Electroactive bacterium generates well-defined nanosized metal catalysts with remarkable water-splitting performance

A biological method that produces metal nanoclusters using the electroactive bacterium Geobacter sulfurreducens could provide a cheap and sustainable solution to high-performance catalyst synthesis for various applications such as water splitting.

Metal nanoclusters contain fewer than one hundred atoms and are much smaller than nanoparticles. They have unique electronic properties but also feature numerous active sites available for catalysis on their surface. There are several synthetic methods for making nanoclusters, but most require multiple steps involving and harsh temperature and pressure conditions.

Biological methods are expected to deliver ecofriendly alternatives to conventional chemical synthesis. Yet, to date, they have only led to large nanoparticles in a wide range of sizes. “We found a way to control the size of the nanoclusters,” says Rodrigo Jimenez-Sandoval, a Ph.D. candidate in Pascal Saikaly’s group at KAUST.

/* */