Toggle light / dark theme

The Structure of DNA

An exploration of the structure of deoxyribonucleic acid, or DNA. If you want to learn more, join our free MITx #700x Introduction to Biology course (http://bit.ly/700xBio) or our #703x Genetics (https://bit.ly/GeneticsPart1) Also try #705x Biochemistry. (http://bit.ly/705xBiochem) or our advanced #728x Molecular Biology course (http://bit.ly/MITx7281x). Learn more about our work: http://web.mit.edu/mitxbio/courses.html.

This video was created for MITx 7.28.1x Molecular Biology: DNA Replication & Repair, offered on edX.

Created by Betsy Skrip (http://betsyskrip.com) and Sera Thornton (http://serathornton.com), with special thanks to Mary Ellen Wiltrout, Stephen Bell, Ceri Riley, and Julian Samal.

© 2015 Massachusetts Institute of Technology. All rights reserved.

Viral Budding of the SARS-CoV-2 virus — NanoBiology Course 2020 — Tuesday Group

In this video students of the Maastricht Science Program NanoBiology Course 2020, show their explanation of the SARS-CoV-2 viral budding. Using CellPAINT, UCFS Chimera and their creativity they explain the nanobiology of how the SARS-CoV-2 virion can bud and leave the cell.

Viruses are not living things. They are just complicated assemblies of molecules, in particular macromolecules such as proteins, oligonucleotides, combined with lipids and carbohydrates. A virus cannot function or reproduce by itself. It needs a host cell.

When a virus enters the host cell, a series of chemical reactions occur that lead to the production of new viruses. A virus needs to find a host cell, attach to it, enter it, and reprogram it such that it will replicate its genome and produce new proteins that allow the assembly of a new virus. Once new viruses have been assembled, they need to get out of the original host cell, on their way to the next host cell they can exhaust. Some viruses have an easy way out: they use up all the resource of the host cells until it dies and lyse. This would only work for naked viruses such as polyomavirus and adenovirus, which lacks a lipid membrane.

Washing hands has been a standard measure since the start of this COVID-19 pandemic. The soap will disintegrate the lipid envelop of the SARS-CoV2 viral particles, as this is an enveloped virus. Enveloped viruses need envelopment, a process in which the capsids become surrounded by a lipid bilayer. This process takes place prior to release. Two mechanisms for envelopment exist. First, envelopment can proceed sequentially after the completion of capsid assembly. The fully assembled capsids are recruited to the membrane by interaction of the viral capsids with viral envelope glycoprotein. Examples of this include herpesvirus and hepatitis B virus. Secondly, the envelopment can occur simultaneously with the capsid assembly. Retrovirus is the representative of this coupled mechanism.

Where does the membrane for the envelopment come from? Some viruses, such as retrovirus and influenza virus, using the plasma membrane as the site of envelopment, whereas others, such as herpesvirus and hepatitis B, use the endoplasmic reticulum (ER) and Golgi bodies as the site of envelopment.

Enveloped viruses are released from the infected cell via exocytosis, a process which is often also called budding. Viruses exploit cellular mechanisms to produce their own progeny extracellularly. For example, the budding of retroviral Gag is facilitated by ESCRT complexes, which are normally involved in the multi-vesicular bodies (MVB) pathway. How does SARS-CoV2 release its offspring from the infected cell? Can we interfere with these steps such that we attack the virus at each step of its life cycle?

New Models Help Unveil the Mystery of Life’s Origins on Earth

New research reveals clues about the physical and chemical characteristics of Earth when life is thought to have emerged.

About four billion years ago, the first signs of life emerged on Earth in the form of microbes. Although scientists are still determining exactly when and how these microbes appeared, it’s clear that the emergence of life is intricately intertwined with the chemical and physical characteristics of early Earth.

“It is reasonable to suspect that life could have started differently—or not at all—if the early chemical characteristics of our planet were different,” says Dustin Trail, an associate professor of earth and environmental sciences at the University of Rochester.

Scientists ‘genetically edit’ bread to cut cancer-causing chemical

Amount of toxin present in wheat, which is carcinogenic when heated, can be reduced and grown, new field study confirms Toast could soon be healthier after scientists grew a field of wheat genetically-edited to remove a cancer-causing chemical. Bread, when baked, produces a dangerous toxin called acrylamide, which is believed to be carcinogenic and when toasted is even more lethal.

Farming robot kills 200,000 weeds per hour with lasers

In 2021, Carbon Robotics unveiled the third-generation of its Autonomous Weeder, a smart farming robot that identifies weeds and then destroys them with high-power lasers. The company now has taken the technology from that robot and built a pull-behind LaserWeeder — and it kills twice as many weeds.

The weedkiller challenge: Weeds compete with plants for space, sunlight, and soil nutrients. They can also make it easier for insect pests to harm crops, so weed control is a top concern for farmers.

Chemical herbicides can kill the pesky plants, but they can also contaminate water and affect soil health. Weeds can be pulled out by hand, but it’s unpleasant work, and labor shortages are already a huge problem in the agriculture industry.

From the Shadows: A New Method for X-Ray Color Imaging

Researchers at the University of Göttingen have created a new approach to generate colored X-ray images. Previously, the only way to determine the chemical composition and arrangement of components in a sample using X-ray fluorescence analysis was to focus X-rays on the entire sample and scan it, which was both time-consuming and costly. The new method allows for the creation of an image of a large area with just one exposure, eliminating the need for focusing and scanning. The findings were published in the journal Optica.

In contrast to visible light, there are no comparably powerful lenses for “invisible” radiation, such as X-ray, neutron, or gamma radiation. However, these types of radiation are essential, for example, in nuclear medicine and radiology, as well as in industrial testing and material analysis.

Uses for X-ray fluorescence include analyzing the composition of chemicals in paintings and cultural artifacts to determine authenticity, origin, or production technique, or the analysis of soil samples or plants in environmental protection. The quality and purity of semiconductor components and computer chips can also be checked using X-ray fluorescence analysis.

New models shed light on life’s origin

The first signs of life emerged on Earth in the form of microbes about four billion years ago. While scientists are still determining exactly when and how these microbes appeared, it’s clear that the emergence of life is intricately intertwined with the chemical and physical characteristics of early Earth.

“It is reasonable to suspect that life could have started differently—or not at all—if the early chemical characteristics of our planet were different,” says Dustin Trail, an associate professor of and environmental sciences at the University of Rochester.

But what was Earth like billions of years ago, and what characteristics may have helped life to form? In a paper published in Science, Trail and Thomas McCollom, a research associate at the University of Colorado Boulder, reveal key information in the quest to find out. The research has important implications not only for discovering the but also in the search for life on other planets.

Blue Alchemist Technology Powers our Lunar Future

To make long-term presence on the Moon viable, we need abundant electrical power. We can make power systems on the Moon directly from materials that exist everywhere on the surface, without special substances brought from Earth. We have pioneered the technology and demonstrated all the steps. Our approach, Blue Alchemist, can scale indefinitely, eliminating power as a constraint anywhere on the Moon.

We start by making regolith simulants that are chemically and mineralogically equivalent to lunar regolith, accounting for representative lunar variability in grain size and bulk chemistry. This ensures our starting material is as realistic as possible, and not just a mixture of lunar-relevant oxides. We have developed and qualified an efficient, scalable, and contactless process for melting and moving molten regolith that is robust to natural variations in regolith properties on the Moon.

Using regolith simulants, our reactor produces iron, silicon, and aluminum through molten regolith electrolysis, in which an electrical current separates those elements from the oxygen to which they are bound. Oxygen for propulsion and life support is a byproduct.