Menu

Blog

Archive for the ‘chemistry’ category: Page 181

Apr 21, 2022

Reversible fuel cells can support grid economically, study finds

Posted by in categories: chemistry, climatology, solar power, sustainability

A major challenge for producers of electricity from solar panels and wind turbines is akin to capturing lightning in a bottle. Both solar and wind increasingly generate electricity amid little demand, when market prices are too low to cover costs. At noon on sunny days, for example, wholesale power prices in areas with high quantities of solar and wind occasionally fall below zero.

Some renewable energy producers store their excess as green , using the electricity to produce hydrogen from water—labeled “green” because the process emits no . Used to create fuels, fertilizer, and other chemicals, the global hydrogen market is about $125 billion, and it’s growing briskly in part due to increased interest in hydrogen as a fuel for buses, trucks, and even ships. The problem is that producing hydrogen with electricity remains fairly expensive, so it’s only profitable to sell at the higher prices paid by lower-volume customers.

But now, researchers at Stanford University and at the University of Mannheim in Germany have found a possible solution: integrated reversible power-to-gas systems that can easily convert hydrogen back to electricity when power prices spike higher.

Apr 19, 2022

Capturing Solar Energy and Converting It to Electricity When Needed — Up to 18 Years Later

Posted by in categories: chemistry, engineering, solar power, sustainability

The researchers behind an energy system that makes it possible to capture solar energy, store it for up to eighteen years, and release it when and where it is needed have now taken the system a step further. After previously demonstrating how the energy can be extracted as heat, they have now succeeded in getting the system to produce electricity, by connecting it to a thermoelectric generator. Eventually, the research – developed at Chalmers University of Technology 0, Sweden – could lead to self-charging electronic gadgets that use stored solar energy on demand.

“This is a radically new way of generating electricity from solar energy. It means that we can use solar energy to produce electricity regardless of weather, time of day, season, or geographical location. It is a closed system that can operate without causing carbon dioxide emissions,” says research leader Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering at Chalmers.

Continue reading “Capturing Solar Energy and Converting It to Electricity When Needed — Up to 18 Years Later” »

Apr 19, 2022

Study shows simple, computationally-light model can simulate complex brain cell responses

Posted by in categories: biotech/medical, chemistry, computing, mathematics, neuroscience

The brain is inarguably the single most important organ in the human body. It controls how we move, react, think and feel, and enables us to have complex emotions and memories. The brain is composed of approximately 86 billion neurons that form a complex network. These neurons receive, process, and transfer information using chemical and electrical signals.

Learning how respond to different signals can further the understanding of cognition and development and improve the management of disorders of the brain. But experimentally studying neuronal networks is a complex and occasionally invasive procedure. Mathematical models provide a non-invasive means to accomplish the task of understanding , but most current models are either too computationally intensive, or they cannot adequately simulate the different types of complex neuronal responses. In a recent study, published in Nonlinear Theory and Its Applications, IEICE, a research team led by Prof. Tohru Ikeguchi of Tokyo University of Science, has analyzed some of the complex responses of neurons in a computationally simple neuron model, the Izhikevich neuron model.

“My laboratory is engaged in research on neuroscience and this study analyzes the basic mathematical properties of a neuron model. While we analyzed a single neuron model in this study, this model is often used in computational neuroscience, and not all of its properties have been clarified. Our study fills that gap,” explains Prof. Ikeguchi. The research team also comprised Mr. Yota Tsukamoto and Ph.D. student Ms. Honami Tsushima, also from Tokyo University of Science.

Apr 18, 2022

Simple, Computationally-Light Model Can Simulate Complex Brain Cell Responses

Posted by in categories: biotech/medical, chemistry, computing, neuroscience

Summary: The Izhikevich neuron model allows the simulation of both periodic and quasi-periodic responses in neurons at lower computational cost.

Source: Tokyo University of Science.

The brain is inarguably the single most important organ in the human body. It controls how we move, react, think and feel, and enables us to have complex emotions and memories. The brain is composed of approximately 86 billion neurons that form a complex network. These neurons receive, process, and transfer information using chemical and electrical signals.

Apr 18, 2022

What’s Really Going on Inside a Neutron Star

Posted by in categories: chemistry, cosmology

Scientists are finally getting closer to figuring out the puzzle of the structure of neutron stars and revealing the nature of their ultra-dense interiors.

In theories of stellar evolution, neutron stars are considered one of the end states of stars, along with white dwarfs and black holes. As a star evolves it will enter stages of expansion as hydrogen is fused into helium and so on through the periodic table of elements. Depending on the mass of the star, a limit will be reached whereby nuclear fusion can no longer take place and the star is no longer able to overcome the immense gravitational force which it has been holding back for all these years. As a result, the star implodes, ejecting its outer layers as a planetary nova or a supernova, leaving only a mere remnant of its former self behind – or so the story goes.

For massive stars, the implosion is so great that it crushes its stellar matter to such high densities that the oppositely charged electrons and protons are forced so close together that they fuse to become neutrons, hence creating a neutron star. This neutron star is so dense that a single teaspoonful could weigh a billion tonnes! For stars massive enough, it is further theorised that the gravitational collapse would be so great that it would instead crush the neutron star down to the size of an infinitesimal point, creating a black hole.

Apr 17, 2022

Teacher Shares How She Grew 100 Varieties of Organic Fruits & Veggies On Her Terrace

Posted by in category: chemistry

From oranges to chillis, figs to dragon fruits, and mangoes to kale, Bindu’s 800 sq-ft terrace is teeming with organic goodness.

Apr 14, 2022

US start-up develops polymer-based batteries for stationary storage

Posted by in categories: chemistry, energy

“Our batteries are designed to suit the needs of stationary power applications where safety, lifetime, levelized costs, and environmental footprints are key decision drivers,” the company said in a statement. “PolyJoule’s conductive polymer cells span the performance curve between traditional lead-acid batteries and modern lithium-ion cells, while enhancing service life and reducing balance of plant costs, due to their no-HVAC thermal management design.”

According to the manufacturer, the battery cells were tested to perform for 12,000 cycles at 100% depth of discharge. The device is based on a standard, two-electrode electrochemical cell containing the conductive polymers, a carbon-graphene hybrid, and a non-flammable liquid electrolyte. Alternating anodes and cathodes are interwoven and then connected in parallel to form a cell.

Apr 13, 2022

AI gives algorithms the means to design biomolecules with a huge range of valuable functions

Posted by in categories: chemistry, information science, robotics/AI

When Dr. Shiran Barber-Zucker joined the lab of Prof. Sarel Fleishman as a postdoctoral fellow, she chose to pursue an environmental dream: breaking down plastic waste into useful chemicals. Nature has clever ways of decomposing tough materials: Dead trees, for example, are recycled by white-rot fungi, whose enzymes degrade wood into nutrients that return to the soil. So why not coax the same enzymes into degrading man-made waste?

Barber-Zucker’s problem was that these enzymes, called versatile peroxidases, are notoriously unstable. “These natural enzymes are real prima donnas; they are extremely difficult to work with,” says Fleishman, of the Biomolecular Sciences Department at the Weizmann Institute of Science. Over the past few years, his lab has developed computational methods that are being used by thousands of research teams around the world to design enzymes and other proteins with enhanced stability and additional desired properties. For such methods to be applied, however, a protein’s precise molecular structure must be known. This typically means that the protein must be sufficiently stable to form crystals, which can be bombarded with X-rays to reveal their structure in 3D. This structure is then tweaked using the lab’s algorithms to design an improved protein that doesn’t exist in nature.

Apr 13, 2022

These temporary tattoos measure glucose

Posted by in categories: chemistry, electronics

Circa 2015


Researchers have taken a regular gel pen and turned it into a DIY chemical sensor.

Apr 12, 2022

Genetic Link Between Routine Blood Test Results and Mental Health Disorders Discovered

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

Summary: Researchers identified a genetic correlation between blood biomarkers and a range of mental health disorders. The study provides evidence some substance measures within the blood may be involved in the cause of mental illnesses. For example, immune system proteins may be involved in the development of depression, schizophrenia, and anorexia.

Source: The Conversation.

Mental health disorders including depression, schizophrenia, and anorexia show links to biological markers detected in routine blood tests, according to our new study of genetic, biochemical and psychiatric data from almost a million people.