Toggle light / dark theme

Discovering optimal conditions for mass production of ultraviolet holograms

Professor Junsuk Rho from the Department of Mechanical Engineering, Chemical Engineering, and Electrical Engineering, Hyunjung Kang and Nara Jeon, PhD candidates, from Department of Mechanical Engineering and Dongkyo Oh, a PhD student, from the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH) successfully conducted a thorough quantitative analysis. Their aim is to determine the ideal printing material for crafting ultraviolet metasurfaces.

Their findings featured in the journal Microsystems & Nanoengineering (“Tailoring high-refractive-index nanocomposites for manufacturing of ultraviolet metasurfaces”).

Diagram illustrating the composition of nanocomposites for ultraviolet metasurface fabrication. (Top) Diagram illustrating the ZrO 2 nanocomposite’s role in achieving high transfer fidelity ultraviolet metaholograms. (Bottom) Comparison of UV holograms under various solvent conditions. (Image: POSTECH)

Dr. Mirko Beljanski’s incredible story and research on natural anticancer compounds Pao Pereira and Rauwolfia

“As long as the pharmaceutical companies quest for innovation is solely driven by intellectual property rights, they will keep failing in the war on cancer.”-Sylvie Beljanski.

Dr. Mirko Beljanski PhD, was a molecular biologist at the Pasteur Institute in Paris who investigated how environmental toxins damage DNA leading to cancer as well as natural compounds with protective anticancer properties. His research eventually led him to the discovery of two unique and powerful anticancer plant extracts: Pao pereira and Rauwolfia vomitoria.

In 1996 Dr. Beljanki’s lab was raided. His research was seized and he was locked in his lab and poisoned with an unknown chemical gas. The next day he was released from his lab and arrested. Two months later he was diagnosed with leukemia and remained under house arrest for the next two years awaiting a trial with no date until he passed away.

From batteries to drug delivery: Emerging applications of carbon nanotubes

Carbon nanotubes (CNTs) are nanometer-scale structures with immense potential to improve different materials, but inconsistencies in their chemical and electrical properties, purity, cost, and concerns over possible toxicity present ongoing challenges. CNTs are a one-dimensional carbon allotrope made of an sp2 hybridized carbon lattice in a cylindrical shape. Single-walled CNTs are a simple tube, while multi-walled CNTs are nested concentrically or wrapped like a scroll (Figure 1).

These nanoscale materials feature a high Young’s modulus and tensile strength and can have either metallic or semiconducting electrical properties. Controlling their atomic arrangement (chirality) affects their conductivity, and because of this, researchers have been trying to understand how synthesis parameters can be used to generate CNTs with predictable electrical properties. The development of various chemical vapor deposition (CVD)-based recipes within the last 20 years to synthesize CNTs has improved this situation.

As we’ve seen in our analysis of the CAS Content Collection™, the world’s largest human-curated collection of published scientific information, the increase in patent activity indicates a high amount of interest in commercial applications for CNTs (Figure 2).

ChemCrow: The Next Frontier in AI-Driven Chemical Synthesis

ChemCrow, an AI developed by researchers at EPFL, integrates multiple expert tools to perform chemical research tasks with unprecedented efficiency.

Chemistry, with its intricate processes and vast potential for innovation, has always been a challenge for automation. Traditional computational tools, despite their advanced capabilities, often remain underutilized due to their complexity and the specialized knowledge required to operate them.

AI Revolution in Chemistry.

High Pressures Reveal Novel Structural Features in Proteins

A pressure of 3,000 bar is applied to the cold shock protein B of Bacillus subtilis in a small tube in the NMR spectroscopy laboratory at the University of Konstanz. This is roughly three times the water pressure at the deepest point of the ocean. The pressure is so intense that the highly dynamic protein shows structural features that would not be sufficiently visible under normal pressure. But why do scientists apply such high pressure, which does not occur anywhere else on our planet under natural conditions? The answer is: To study processes and properties that are too volatile to be observed under normal conditions.

“This high pressure allows us to make states visible that actually do exist at 1 bar, but which we can only observe directly at 3,000 bar”, explains Frederic Berner, University of Konstanz. Literally “under high pressure”, the doctoral researcher investigates the properties of a protein determined by its structure, and how changes in the structure in turn influence its properties. In the research group Physical Chemistry and Nuclear Magnetic Resonance at the University of Konstanz, led by Michael Kovermann, he recently implemented a new method for analyzing the structural properties of proteins at 3,000 bar with as little influence as possible from surrounding effects. The two researchers now present their new methodological approach in the journal Angewandte Chemie International Edition.

Researchers create 2D all-organic perovskites and demonstrate potential use in 2D electronics

Perovskites are among the most researched topics in materials science. Recently, a research team led by Prof. LOH Kian Ping, Chair Professor of Materials Physics and Chemistry and Global STEM Professor of the Department of Applied Physics of The Hong Kong Polytechnic University (PolyU), Dr Kathy LENG, Assistant Professor of the same department, together with Dr Hwa Seob CHOI, Postdoctoral Research Fellow and the first author of the research paper, has solved an age-old challenge to synthesise all-organic two-dimensional perovskites, extending the field into the exciting realm of materials. This breakthrough opens up a new field of 2D all-organic perovskites, which holds promise for both fundamental science and potential applications.

This research was published in the journal Science (“Molecularly thin, two-dimensional all-organic perovskites”).

Perovskites are named after their structural resemblance to the mineral calcium titanate perovskite, and are well known for their fascinating properties that can be applied in wide-ranging fields such as solar cells, lighting and catalysis. With a fundamental chemical formula of ABX 3, perovskites possess the ability to be finely tuned by adjusting the A and B cations as well as the X anion, paving the way for the development of high-performance materials.