Menu

Blog

Archive for the ‘chemistry’ category: Page 110

Jan 17, 2023

New method for designing tiny 3D materials could make fuel cells more efficient

Posted by in categories: chemistry, energy, nanotechnology, sustainability

Scientists from UNSW Sydney have demonstrated a novel technique for creating tiny 3D materials that could eventually make fuel cells like hydrogen batteries cheaper and more sustainable.

In the study published in Science Advances, researchers from the School of Chemistry at UNSW Science show it’s possible to sequentially “grow” interconnected in 3D at the nanoscale which have unique chemical and to support energy conversion reactions.

In chemistry, hierarchical structures are configurations of units like molecules within an organization of other units that themselves may be ordered. Similar phenomena can be seen in the , like in flower petals and tree branches. But where these structures have extraordinary potential is at a level beyond the visibility of the human eye—at the nanoscale.

Jan 17, 2023

Extraordinary Discovery May Substantially Change Our Understanding of the Mechanism of Photosynthesis

Posted by in categories: chemistry, energy

Photosynthesis is the greatest natural process converting sunlight into chemical energy on a massive scale and maintaining life on Earth. There are basically two successive stages of oxygenic photosynthesis.

Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.

Jan 16, 2023

Small laser device can help detect signs of life on other planets

Posted by in categories: alien life, chemistry

As space missions delve deeper into the outer solar system, the need for more compact, resource-conserving and accurate analytical tools has become increasingly critical—especially as the hunt for extraterrestrial life and habitable planets or moons continues.

A University of Maryland–led team developed a new instrument specifically tailored to the needs of NASA . Their mini laser-sourced analyzer is significantly smaller and more resource efficient than its predecessors—all without compromising the quality of its ability to analyze planetary material samples and potential biological activity onsite. The team’s paper on this new device was published in the journal Nature Astronomy on January 16, 2023.

Weighing only about 17 pounds, the instrument is a physically scaled-down combination of two important tools for detecting signs of life and identifying compositions of materials: a pulsed ultraviolet laser that removes small amounts of material from a planetary sample and an Orbitrap analyzer that delivers high-resolution data about the chemistry of the examined materials.

Jan 14, 2023

Chemists cook up brand-new kind of nanomaterial

Posted by in categories: chemistry, nanotechnology

There’s a new nanomaterial on the block. University of Oregon chemists have found a way to make carbon-based molecules with a unique structural feature: interlocking rings.

Like other nanomaterials, these linked-together molecules have interesting properties that can be “tuned” by changing their size and chemical makeup. That makes them potentially useful for an array of applications, such as specialized sensors and new kinds of electronics.

“It’s a new topology for , and we’re finding new properties that we haven’t been able to see before,” said James May, a graduate student in chemistry professor Ramesh Jasti’s lab and the first author on the paper. May and his colleagues report their findings in a paper published in Nature Chemistry.

Jan 13, 2023

Artificial Organic Neurons Created — Almost Like Biological Nerve Cells

Posted by in categories: biotech/medical, chemistry, robotics/AI

Biorealistic organic electrochemical neurons enabled by ion-tunable antiambipolarity in mixed ion-electron conducting polymers.

An artificial organic neuron that closely mimics the characteristics of biological nerve cells has been created by researchers at Linköping University (LiU), Sweden. This artificial neuron can stimulate natural nerves, making it a promising technology for various medical treatments in the future.

Work to develop increasingly functional artificial nerve cells continues at the Laboratory for Organic Electronics, LOE. In 2022, a team of scientists led by associate professor Simone Fabiano demonstrated how an artificial organic neuron could be integrated into a living carnivorous plant to control the opening and closing of its maw. This synthetic nerve cell met 2 of the 20 characteristics that differentiate it from a biological nerve cell.

Jan 12, 2023

New Research Reveals the Biochemical “Rings of Power”

Posted by in categories: biotech/medical, chemistry

Researchers at the Max Planck Institute for Terrestrial Microbiology have discovered the biosynthesis of a rare compound called benzoxazolinate, which is found in Benzobactins – a class of bacterial natural products that have unique biological activity due to its two-ring structure.

By utilizing genomic research, scientists were able to uncover the previously unknown genes responsible for its formation. This breakthrough opens doors to the discovery of a multitude of new natural compounds with medical applications.

Microorganisms in their natural habitat often face varying environmental conditions and have evolved to produce a diverse range of natural products with various chemical compositions and functions to aid their survival.

Jan 12, 2023

Researchers devise a new way to control ‘3D’ effects in chemical reactions

Posted by in categories: chemistry, particle physics

Researchers have observed steric effects—the interactions of molecules depending on their spatial orientation (not just between their electrons involved in bonding)—in a chemical reaction involving non-polar molecules for the first time. The breakthrough opens the door to an entirely new way to control the products of chemical reactions.

A paper describing the research team’s findings was published in the journal Science on Jan. 12.

One of the central goals of chemistry is to develop new methods of controlling chemical reactions. For the most part, control of chemical reactions involves understanding of the interactions between the electrons of different atoms. These “electronic” effects govern many of the properties and behavior of chemicals and the changes they undergo during reactions.

Jan 12, 2023

‘A perfect little system’: Physicists isolate a pair of atoms to observe p-wave interaction strength for the first time

Posted by in categories: chemistry, particle physics, quantum physics

“Suppose you knew everything there was to know about a water molecule—the chemical formula, the bond angle, etc.,” says Joseph Thywissen, a professor in the Department of Physics and a member of the Centre for Quantum Information & Quantum Control at the University of Toronto.

“You might know everything about the molecule, but still not know there are waves on the ocean, much less how to surf them,” he says. “That’s because when you put a bunch of molecules together, they behave in a way you probably cannot anticipate.”

Thywissen is describing the concept in physics known as emergence: the relationship between the behavior and characteristics of individual particles and large numbers of those particles. He and his collaborators have taken a first step in understanding this transition from “one-to-many” particles by studying not one, not many, but two isolated, interacting particles, in this case potassium atoms.

Jan 11, 2023

Diamond formation kinetics in shock-compressed C─H─O samples recorded

Posted by in categories: chemistry, nanotechnology, space

Year 2022 Basically this can create diamonds from trash.


Laser compression of PET plastics mimics the chemistry inside Uranus and may offer a way to simply produce nanodiamonds.

Jan 11, 2023

Newly discovered CRISPR immune system shuts down infected cells to thwart infection

Posted by in categories: biotech/medical, chemistry

In this interview, News Medical speaks to Assistant Professor Ryan Jackson about his latest work, published in tandem Nature papers, detailing the discovery of a new CRISPR immune system.

Please can you introduce yourself and tell us about your professional background?

I am an Assistant Professor at Utah State University (USU). I use biochemical and structural techniques to understand how the molecules that perform the reactions of life function. I’ve been working in the CRISPR field since 2011. I started as a postdoc in Blake Wiedenheft’s lab at Montana State University, and in 2016 I started my own research lab at USU. I earned both of my degrees (a B.S. in Biology and a Ph.D. in Biochemistry) from USU, so joining the faculty was like coming home. My research lab specializes in determining the structure and function of newly discovered and obscure CRISPR systems.