Toggle light / dark theme

The Futurists — EPS_286: The Meaning Economy with David Shapiro

In this week’s episode we interview author, AI theorist and researcher David Shapiro is part philosopher, part theorist with a fair bit of practical wisdom thrown in. With a hit YouTube channel Shapiro travels the globe as a speaker and advisor musing on the longer-term impacts of AI, technology and human adaptability. In this deep conversation with host Brett King, we delve into the ways in which advanced AI might completely transform our way of life, including economics, politics and what it means to be human itself. This is not one you’ll want to miss.

Follow David Shapiro: ‪@DaveShap

ABOUT SHOW
Subscribe and listen to TheFuturists.com Podcast where hosts Brett King and Robert TerceK interview the worlds foremost super-forecasters, thought leaders, technologists, entrepreneurs and futurists building the world of tomorrow. Together we will explore how our world will radically change as AI, bioscience, energy, food and agriculture, computing, the metaverse, the space industry, crypto, resource management, supply chain and climate will reshape our world over the next 100 years. Join us on The Futurists and we will see you in the future!

HOSTS
https://thefuturists.com/info/hosts-b / brettking & http://brettking.com/ / superplex &https://roberttercek.com/ SUBSCRIBE & LISTEN https://thefuturists.com/info/listen–https://open.spotify.com/show/0nvdnEshttps://podcasts.apple.com/us/podcasthttps://blubrry.com/thefuturists/ FOLLOW & ENGAGE / futuristpodcast / futuristpodcast / thefuturistspodcast / @thefuturistspodcast GET EVEN MORE https://thefuturists.com/exclusive/
/ brettking & http://brettking.com/
/ superplex & https://roberttercek.com/

SUBSCRIBE & LISTEN
https://thefuturists.com/info/listen–
https://open.spotify.com/show/0nvdnEs
https://podcasts.apple.com/us/podcast
https://blubrry.com/thefuturists/

FOLLOW & ENGAGE

Is NAD Associated With Biomarkers Of Mitochondrial Function?

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

The Future of Manufacturing Might Be in Space

Growing these seed crystals in space could lead to much more pure wafers, says Western: “You can almost press the reset button on what we think is the limit of a semiconductor.”

Frick’s company Astral plans to do this with a mini fridge-sized furnace that reaches temperatures of about 1,500 degrees Celsius (2,700 degrees Fahrenheit). The applications of crystal growth are not just limited to semiconductors but could also lead to higher quality pharmaceuticals and other materials science breakthroughs.

Other products made in space could be produced with similar benefits. In January, China announced it had made a groundbreaking new metal alloy on its Tiangong space station that was much lighter and stronger than comparable alloys on Earth. And the unique environment of low gravity can offer new possibilities in medical research. “When you shut off gravity, you’re able to fabricate something like an organ,” says Mike Gold, the president of civil and international space business at Redwire, a Florida-based company that has experimented with in-space manufacturing on the International Space Station for years. “If you try to do this on Earth, it would be squished.”

Bridging worlds: Physicists develop novel test of the holographic principle

Exactly 100 years ago, famed Austrian physicist Erwin Schrödinger (yes, the cat guy) postulated his eponymous equation that explains how particles in quantum physics behave. A key component of quantum mechanics, Schrödinger’s Equation provides a way to calculate the wave function of a system and how it changes dynamically in time.

“Quantum mechanics, along with Albert Einstein’s theory of general relativity are the two pillars of modern physics,” says Utah State University physicist Abhay Katyal. “The challenge is, for more than half a century, scientists have struggled to reconcile these two theories.”

Quantum mechanics, says Katyal, a doctoral student and Howard L. Blood Graduate Fellow in the Department of Physics, describes the behavior of matter and forces at the subatomic level, while explains gravity on a large scale.

Semiconducting polymer design strategies point way to reducing scar tissue around implants

Over time, scar tissue slows or stops implanted bioelectronics. But new interdisciplinary research could help pacemakers, sensors and other implantable devices keep people healthier for longer.

In a paper published in Nature Materials, a group of researchers led by University of Chicago Pritzker School of Molecular Engineering Asst. Prof. Sihong Wang has outlined a suite of design strategies for the used in , all aimed at reducing the foreign-body response triggered by implants.

The immune system is primed to detect and respond to foreign objects. In some cases, the immune system might reject lifesaving devices such as pacemakers or drug delivery systems. But in all cases, the immune system will encase the devices in over time, hurting the devices’ ability to help patients.

Hidden network links may predict sudden shifts like seizures and climate tipping points

The global climate is in an imbalance. Potential “tipping elements” include the Greenland ice sheet, coral reefs, and the Amazon rainforest. Together they form a network that can collapse if just one individual component tips.

Researchers from Bonn University Hospital (UKB) and the University of Bonn have now shed light on seemingly sudden and rare, often irreversible changes within a system, such as those that can be observed in the climate, the economy, social networks or even the human brain. They took a closer look at extreme events such as epileptic seizures.

Their aim was to better understand the mechanisms underlying such changes in order to ultimately make predictions. The results of their work have now been published in the journal Physical Review Research.

How old are you, really? Tool measures aging from the inside out

A new health-assessment method, called the Health Octo Tool, uses eight measures drawn from physical exams and routine lab tests to calculate a person’s biological age.

The tool may predict an individual’s risk of disability and death more accurately than existing health predictors.

The research team, led by Shabnam Salimi from the University of Washington School of Medicine, believes the tool could uncover new factors that shape the aging process and help design interventions to extend lifespan. Salimi is a physician-scientist and acting instructor in the Department of Anesthesiology & Pain Medicine.

Researchers discover large protein-free RNA structures

Ribonucleic acid (RNA) molecules may be best known for their job ferrying the genetic information encoded in DNA to a cell’s protein factories, but these molecules aren’t just a middleman for protein production. In fact, some RNA molecules don’t code for proteins at all and serve various other important functions in cells, such as regulating gene expression and catalyzing chemical reactions. However, the functions of many non-coding RNAs remain mysterious.