Toggle light / dark theme

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get my labs): https://www.ultalabtests.com/partners/michaellustgarten.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

1,271 likes, — artificialintelligencenews.in on November 22, 2024: According to former Google CEO Eric Schmidt, the tech industry anticipates that within the next five years, AI systems will be able to write and improve their code. This means AI will soon be capable of analyzing and enhancing its programming, setting off a recursive process that could dramatically accelerate development.

Schmidt suggests that by around 2030–2032, we might see a single AI system that can match 80–90% of the expertise of top specialists across various fields—whether that’s physics, chemistry, art, or more. Such a system would, in effect, be smarter than any human, as no one person can excel in all these disciplines at once. In short, Schmidt believes we are approaching a future where AI could possess intellectual versatility that surpasses any individual human’s abilities.

Researchers at Karolinska Institutet have found a molecule that can both help the intestines to heal after damage and suppress tumor growth in colorectal cancer. The discovery could lead to new treatments for inflammatory bowel disease (IBD) and cancer.

The results are published in the journal Nature in a paper titled “Liver X receptor unlinks intestinal regeneration and tumorigenesis.”

Many patients with inflammatory bowel disease (IBD) such as Crohn’s disease or ulcerative colitis do not respond to available treatments, highlighting the need to identify novel therapeutic strategies. In their study, researchers propose that promoting mucosal healing through tissue regeneration could be a valid alternative to immunosuppressive drugs.

A research team led by Dr. Du Xuemin from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences has reported a living interface with unique functionalities of durable secretion of bioactive exosomes with tunable contents and miRNA cargoes, effectively promoting neurovascular remodeling.

The study was published in Matter on Nov. 21.

Neurovascular remodeling is crucial for restoring normal functions of regenerated tissues or engineered organs, which requires multi-target and phase-specific paracrine regulation. However, existing strategies still cannot mimic such dynamic and complicated paracrine regulation effects in the native physiological processes, hindering synergistic neurovascular remodeling.

Communication and coordination among different cells are fundamental aspects that regulate many functions in our body. This process, known as paracrine signaling, involves the release of signaling molecules by a cell into its extracellular matrix (ECM) or surroundings to communicate changes in its cellular processes or the local environment. These signaling molecules are then detected by neighboring cells, leading to various cellular responses.

For instance, during cell/tissue injury, the paracrine signaling process releases that signal nearby stem cells to assist in tissue repair in the form of scar tissue formation or blood clotting. Similar processes occur in the regulation of other vital functions, such as digestion, respiration, and reproduction. Additionally, paracrine signals influence the expression and activity of enzymes involved in drug metabolism and play a role in drug–drug interactions.

The signaling molecules, which may contain proteins and , are transported within tiny vesicles called exosomes. These vesicles serve as valuable biomarkers for various diseases and can even be engineered to carry drugs, making them a highly effective targeted drug delivery system. Notably, the hormone oxytocin and the neurotransmitter dopamine are paracrine messengers.

Researchers have used 3D cell culture models in the past decade to translate molecular targets during drug discovery processes to thereby transition from an existing predominantly 2D culture environment. In a new report now published in Science Advances, Charalampos Pitsalidis and a research team in physics and chemical engineering at the University of Science and Technology in Abu Dhabi, UAE and the University of Cambridge describe a multi-well plate bioelectronic platform named the e-transmembrane to support and monitor complex 3D cell architectures.

The team microengineered the scaffolds using poly(3,4-ethylenedioxythiophene polystyrene sulfonate to function as separating membranes to isolate cell cultures and achieve real-time in situ recordings of cell growth and function. The to volume ratio allowed them to generate deep stratified tissues in a porous architecture. The platform is applicable as a universal resource for biologists to conduct next-generation high-throughput drug screening assays.

Insecticides have been used for centuries to counteract widespread pest damage to valuable food crops. Eventually, over time, beetles, moths, flies and other insects develop genetic mutations that render the insecticide chemicals ineffective.

Escalating resistance by these mutants forces farmers and vector control specialists to ramp up use of poisonous compounds at increasing frequencies and concentrations, posing risks to human health and damage to the environment since most insecticides kill both ecologically important insects as well as pests.

To help counter these problems, researchers recently developed powerful technologies that genetically remove insecticide-resistant variant genes and replace them with genes that are susceptible to pesticides. These gene-drive technologies, based on CRISPR gene editing, have the potential to protect valuable crops and vastly reduce the amount of chemical pesticides required to eliminate pests.

Scientists have discovered that tRNAs can determine how long mRNAs exist in a cell, causing some messages to be stabilized and translated into more protein, while directing others to be degraded and limiting how much protein can be made. They published their report in Science.

The messenger RNA (mRNA)-based vaccines developed to fight the virus SARS-CoV-2 saved lives and made the nucleic acid a household name during the COVID-19 pandemic. Suddenly, everyone knew a little bit more about the molecule that helps convert genetic information into proteins.

But in addition to determining which proteins are made, mRNAs can also specify how much protein is produced.

A multi-institutional team of researchers, led by Georgia Tech’s Francesca Storici, has discovered a previously unknown role for RNA. Their insights could lead to improved treatments for diseases like cancer and neurodegenerative disorders while changing our understanding of genetic health and evolution.

A new “toolkit” to repair damaged DNA that can lead to aging, cancer and motor neuron disease (MND) has been discovered by scientists at the Universities of Sheffield and Oxford.

Published in Nature Communications, the research shows that a protein called TEX264, together with other enzymes, is able to recognize and “eat” toxic proteins that can stick to DNA and cause it to become damaged. An accumulation of broken, damaged DNA can cause cellular aging, cancer and neurological diseases such as MND.

Until now, ways of repairing this sort of DNA damage have been poorly understood, but scientists hope to exploit this novel repair toolkit of proteins to protect us from aging, cancer and neurological disease.