Toggle light / dark theme

Hospitals around the country are conserving critical intravenous fluid supplies to cope with a shortage that may last months. Some hospital administrators say they are changing how they think about IV fluid hydration altogether.

Hurricane Helene, which hit North Carolina in September, wrecked a Baxter International facility that produces 60% of the IV fluids used in the U.S., according to the American Hospital Association.

The company was forced to stop production and is rationing its products. In an update posted Nov. 7, Baxter said its North Cove facility had resumed producing some IV fluids. In an email to KFF Health News, the company wrote that customers will be able to order normal quantities of “certain IV solutions products” by the end of the year, but there is no timeline for when the North Cove facility will be back to prehurricane production levels.

But according to recent research into patient attitudes on AI, providers should be thinking carefully about how they deploy those tools if they want to preserve patient trust.

Earlier this fall, Mark Polyak, president of analytics at IPSOS, and Dr. Lukasz Kowalczyk, a physician at Peak Gastroenterology Associates, spoke on a panel discussion at the HIMSS AI in Healthcare Forum that explored patients’ perspectives and attitudes about healthcare AI. Above all, they’re seeking healthcare interactions and experiences that are transparent and personalized, experts on the panel said.

Some sequences in the genome cause genes to be switched on or off. Until now, each of these gene switches, or so-called enhancers, was thought to have its own place on the DNA. Different enhancers are therefore separated from each other, even if they control the same gene, and switch it on in different parts of the body.

A recent study from the University of Bonn and the LMU Munich challenges this idea. The findings are also important because gene switches are thought to play a central role in evolution. The study has been published in the journal Science Advances.

The blueprint of plant and animal forms is encoded in their DNA. But only a small part of the genome—about two percent in mammals—contains genes, the instructions for making proteins. The rest largely controls when and where these genes are active: how many of their transcripts are produced, and thus how many proteins are made from these transcripts.

The delivery of nanomedicines using gas bubbles has shown itself to be a unique way of transporting cytotoxins to the lungs of cancer patients. The method enables precise and focused treatments, and the local action of the drugs also prevents a range of side-effects.

Researchers at Karolinska Institutet and Karolinska University Hospital have developed a microscopy method that enables detailed three-dimensional (3D) RNA analysis at cellular resolution in whole intact mouse brains. The new method, called TRISCO, has the potential to transform our understanding of brain function, both in normal conditions and in disease, according to a new study published in Science.

Despite great advances in RNA analysis, linking RNA data to its spatial context has long been a challenge, especially in intact 3D tissue volumes. The TRISCO method now makes it possible to perform three-dimensional RNA imaging of whole mouse brains without the need to slice the brain into thin sections, which was previously necessary.

“This method is a powerful tool that can drive forward. With TRISCO, we can study the complex anatomical structure of the brain in a way that was previously not possible,” says Per Uhlén, professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, and the study’s last author.

Numbers tell a story. From your credit score to your age, metrics predict a variety of outcomes, whether it’s your likelihood to get a loan or your risk for heart disease. Now, Stanford Medicine researchers have described another telling metric — one that can predict mortality. It’s called sleep age.

Sleep age is a projected age that correlates to one’s health based on their quality of sleep. So for instance, if you analyze the sleep characteristics of dozens of 55-year-olds and average them out, you’ll have an idea of what sleep looks like at that age. For instance, someone who’s 55 and sleeps soundly through the night with good quality REM cycles could, theoretically, might have a sleep age of 45.

Scientists looking to tackle our ongoing obesity crisis have made an important discovery: Intermittent calorie restriction leads to significant changes both in the gut and the brain, which may open up new options for maintaining a healthy weight.

Researchers from China studied 25 volunteers classed as obese over a period of 62 days, during which they took part in an intermittent energy restriction (IER) program – a regime that involves careful control of calorie intake and relative fasting on some days.

Not only did the participants in the study lose weight – 7.6 kilograms (16.8 pounds) or 7.8 percent of their body weight on average – there was also evidence of shifts in the activity of obesity-related regions of the brain, and in the make-up of gut bacteria.

A large number of 2D materials like graphene can have nanopores—small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many of the materials’ properties, enabling the latter to sense gases, filter out seawater, and even help in DNA sequencing.

“The problem is that these 2D materials have a wide distribution of nanopores, both in terms of shape and size,” says Ananth Govind Rajan, Assistant Professor at the Department of Chemical Engineering, Indian Institute of Science (IISc). “You don’t know what is going to form in the material, so it is very difficult to understand what the property of the resulting membrane will be.”

Machine learning models can be a powerful tool to analyze the structure of nanopores in order to uncover tantalizing new properties. But these models struggle to describe what a looks like.