Toggle light / dark theme

The development of increasingly sophisticated sensors can facilitate the advancement of various technologies, including robots, security systems, virtual reality (VR) equipment and sophisticated prosthetics. Multimodal tactile sensors, which can pick up different types of touch-related information (e.g., pressure, texture and type of material), are among the most promising for applications that can benefit from the artificial replication of the human sense of touch.

Northwestern Medicine investigators have discovered how disruptions in the circadian rhythm in our muscles combined with poor diet can contribute to the development of diabetes, according to a recent study published in Proceedings of the National Academy of Sciences.

“When we mess up our through environmental circadian disruption like , jet lag or , it’s possible that it’s impacting our muscle clocks and metabolism. If that’s happening and we are combining this with an unhealthy diet, this might make it more likely for us to develop glucose intolerance and diabetes,” said Clara Peek, Ph.D., assistant professor of Biochemistry and Molecular Genetics and of Medicine in the Division of Endocrinology, Metabolism and Molecular Medicine, who was senior author of the study.

The body’s natural is comprised of proteins called that are present throughout the body, including . The clock synchronizes physical and behavioral changes to the external environment during the 24-hour light cycle.

Laser-plasma accelerators can accelerate particles over distances that are up to 1,000 times shorter than those required by conventional accelerators. The technology promises compact systems that have enormous potential to open up new applications for accelerators, for example in medicine or industry. However, the current prototypes have one drawback: most can only accelerate a few particle bunches per second—not enough for practical applications.

DESY’s new flagship laser, KALDERA, has now made a decisive step forward: Driving the compact accelerator MAGMA, the innovative laser has been shown to accelerate 100 particle bunches per second. This increased repetition rate opens the path to actively stabilize the plasma accelerator performance in the future, which will bring it a good deal closer to first applications.

In conventional accelerators, radio-frequency waves are fed into so-called resonators. These waves can give a push to particles passing through them—in most cases electrons—and transfer energy to them. In order to raise the particles to high energy levels, numerous resonators have to be connected in series. This makes the systems long and expensive.

Significant advances in the diagnosis and treatment of congenital heart disease have transformed patient outcomes, leading to an expanding adult congenital heart disease population. Many of these adults require lifelong procedural interventions, frequently performed in catheterization labs under the guidance of echocardiography. This review explores the transesophageal echocardiographic aspect in key catheterization-based procedures.

Alpha-1-antitrypsin is a so-called protease inhibitor, a type of enzyme inhibitor. It is produced in the liver but exerts its effects in the lungs, where it regulates immune cell activity. This regulation is crucial, and an overactive immune response can cause serious lung diseases.

However, some individuals carry a genetic mutation that causes the alpha-1 protein to fold incorrectly. As a result, too little functional alpha-1 is produced, and insufficient amounts reach the lungs.

The mutation is inherited from one or both parents. About 1 in 20 people in Europe carry the heterozygous form of the mutation—inherited from only one parent—and often experience no symptoms or only mild ones. In contrast, the rarer homozygous form, inherited from both parents, affects approximately 1 in 2000 individuals and is much more severe.

Researchers from the International Institute of Molecular and Cell Biology in Warsaw (IIMCB) have described a new mechanism that improves the efficiency of mRNA-based therapies. The research findings could facilitate the development of novel therapeutics against cancers and infectious diseases.

The scientific experiments were carried out at IIMCB, but important contributions also came from collaborators at the Faculty of Physics and Faculty of Biology of the University of Warsaw, the Medical University of Warsaw, and the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences. The study by the Polish researchers has just been published in Nature.

“mRNA vaccines played a key role in controlling the spread of the pandemic. However, mRNA itself is an exceptionally unstable molecule. This does not affect the safety of the therapy but limits its effectiveness—for example, by shortening the duration of action. A particularly important role in mRNA stability is played by its so-called poly(A) . In our research, we examined these limitations,” says Prof. Andrzej Dziembowski from the Laboratory of RNA Biology—ERA Chairs Group at the International Institute of Molecular and Cell Biology in Warsaw, one of the lead authors of the study.

High-intensity electrical pulses have been medically used to destroy tumors while sparing healthy tissue. But lower-intensity pulses may have a different effect—they reshape the battlefield, making tumors more vulnerable to the body’s own defenses.

According to Virginia Tech researchers at the Fralin Biomedical Research Institute at VTC, these lower-intensity pulses don’t kill all the outright. Instead, they alter the ’s environment, increasing blood vessel density within a day of and boosting lymphatic vessel growth by day three.

These changes may help guide to the tumor, potentially improving the body’s natural ability to fight cancer.

A small protein involved in neurodegeneration leading to Parkinson’s disease also drives a type of skin cancer known as melanoma, new research finds.

The study, published in the journal Science Advances, suggests new avenues for drug development to reduce the risk of developing both Parkinson’s and skin cancer by targeting the alpha-synuclein protein, which appears to have a critical role in regulating cellular functions.

“Developing drugs that target alpha-synuclein may be useful in both diseases,” said the senior author.