Toggle light / dark theme

Unlocking the Power of Neuroplasticity: Transforming Your Brain for Lifelong Growth

The Sentis Brain Animation Series takes you on a tour of the brain through a series of short and sharp animations. The fourth in the series explains how our most complex organ is capable of changing throughout our lives. This inspiring animation demonstrates how we all have the ability to learn and change by rewiring our brains. Who is Sentis? We are a global team assisting individuals and organisations change their lives for the better. The human mind is our focus and we believe the mind is an individual’s most important performance tool. We are the world leaders in the application of psychology and neuroscience to safety, leadership development, and wellbeing in the workplace. The Sentis Brain Animation Series is the intellectual property of Sentis Pty Ltd and only approved for third party use under a formal licensing agreement.

AI opens a path to a better understanding of changes in the brain

Brain networks are often represented by graph models that incorporate neuroimaging data from MRI or CT scans to represent functional or structural connections within the brain. These brain graphs can be used to understand how the organ changes over time.

Traditionally, however, these models treat the brain graphs as static, which can miss or ignore underlying changes that could signal the onset of disease or neurological disorders.

A collaborative team of researchers led by Lifang He, an assistant professor of computer science and engineering at Lehigh University, recently received a $1 million grant from the National Science Foundation, with $300,000 going to Lehigh, to develop new methods for modeling the dynamics of brain graphs using artificial intelligence that will generate more accurate, interpretable, and fair predictions when it comes to disease.

Laser Leap: Organic Breakthrough Lights Up the Tech World

Scientists have made a pivotal advancement in creating compact laser technology using organic semiconductors. This development promises diverse applications, from enhancing OLED displays to aiding in disease detection and environmental monitoring. The new laser, which emits green light in short pulses, overcomes the traditional need for an external laser in organic semiconductor lasers. Credit: SciTechDaily.com.

Scientists have achieved a breakthrough in creating an electrically driven organic semiconductor laser, paving the way for advanced and versatile laser applications.

Researchers at the University of St. Andrews are leading a significant breakthrough in a decades-long challenge to develop compact laser technology.

Redefining Brain Evolution: Unveiling the “Little Brain’s” Role in the Human Cognitive Leap

The advancement of higher cognitive abilities in humans is predominantly associated with the growth of the neocortex, a brain area key to conscious thinking, movement, and sensory perception. Researchers are increasingly realizing, however, that the “little brain” or cerebellum also expanded during evolution and probably contributes to the capacities unique to humans, explains Prof. Henrik Kaessmann from the Center for Molecular Biology of Heidelberg University.

His research team has – together with Prof. Dr Stefan Pfister from the Hopp Children’s Cancer Center Heidelberg – generated comprehensive genetic maps of the development of cells in the cerebella of humans, mice, and opossums. Comparisons of these data reveal both ancestral and species-specific cellular and molecular characteristics of cerebellum development spanning over 160 million years of mammalian evolution.

The Virus Zoo: A Primer on Molecular Virology

Genome and Structure:

HIV’s genome is a 9.7 kb linear positive-sense ssRNA.1 There is a m7G-cap (specifically the standard eukaryotic m7GpppG as added by the host’s enzymes) at the 5’ end of the genome and a poly-A tail at the 3’ end of the genome.2 The genome also has a 5’-LTR and 3’-LTR (long terminal repeats) that aid its integration into the host genome after reverse transcription, that facilitate HIV genetic regulation, and that play a variety of other important functional roles. In particular, it should be noted that the integrated 5’UTR contains the HIV promoter called U3.3,4

HIV’s genome translates three polyproteins (as well as several accessory proteins). The Gag polyprotein contains the HIV structural proteins. The Gag-Pol polyprotein contains (within its Pol component) the enzymes viral protease, reverse transcriptase, and integrase. The Gag-Pol polyprotein is produced via a −1 ribosomal frameshift at the end of Gag translation. Because of the lower efficiency of this frameshift, Gag-Pol is synthesized 20-fold less frequently than Gag.5 The frameshift’s mechanism depends upon a slippery heptanucleotide sequence UUUUUUA and a downstream RNA secondary structure called the frameshift stimulatory signal (FSS).6 This FSS controls the efficiency of the frameshift process.

Ultra-thin metal-organic layers prevent ice crystal formation in novel cryoprotectants

Small amounts of nanometer-thin metal-organic layers efficiently protect red blood cells during freezing and thawing, as a team of researchers writing in the journal Angewandte Chemie International Edition has discovered. The nanolayers, made from metal-organic frameworks based on the metal hafnium, prevent ice crystal formation at very low concentrations. This effective novel cryoprotection mode could be used to develop new and more efficient cryoprotectants for the biosciences.

Cryoprotectants prevent ice crystals from forming when samples are frozen. Growing crystals can damage delicate cell membranes and cell components and disrupt cell integrity. Some solvents or polymers make good cryoprotectants; they keep ice in check by binding and disrupting their ordered assembly during ice formation.

Synthetic chemistry has yet more tricks up its sleeve for targeting and influencing ice formation in a more effective way. Metal-organic frameworks (MOFs) are three-dimensional crystalline networks of metal ions linked by organic ligands. These ligands can be tailored to bind such as water, allowing the assembly of the water molecules into ice crystals to be very precisely tuned.

Researchers create 3D DNA nanorobots

Researchers at universities in New York and Ningbo, China, say they have created tiny robots built from DNA that can reproduce themselves.

Such nanorobots could one day launch search-and-destroy missions against within a human’s bloodstream without the need for surgery or collect toxic waste from the ocean.

The tiny mechanism is so small that 1,000 of them could fit into the width of a sheet of paper.

Why Do Humans Grow Old?

I like the chapter “would you want to be”.


Explore your DNA with ADNTRO! Use the code TODAY to get a 10% discount on the DNA kit: https://bit.ly/3GbE3sg or use the code TODAYRAW to get a 10% discount on your full DNA report: https://bit.ly/3sDuZJM

Ah, immortality, previously only for the gods and individuals with a fetish for chopping each other’s heads off. In more modern times, science is coming closer and closer to both identifying the tapestry of things that cause humans to grow old, and slowly but surely taking the first steps into finding ways to delay and even reverse this process for fun and profit. So, just what causes individuals of the human persuasion to grow old and die, who was the oldest confirmed human, are there any living things that are biologically immortal, and if there was an option to become biologically immortal, would you take it?

0:00 Intro.
3:42 The Oldest Human.
4:50 The Lobster.
9:01 It’s Not the Years Honey, It’s the Mileage.
13:32 Would You Want to Be Biologically Immortal?
17:24 The Senescent Cell Problem.
20:46 A Myriad of Other Factors.
26:04 The Biologically Immortal Creatures.

Author: Daven Hiskey.

/* */