Toggle light / dark theme

The ideal material for interfacing electronics with living tissue is soft, stretchable, and just as water-loving as the tissue itself—in short, a hydrogel. Semiconductors, the key materials for bioelectronics such as pacemakers, biosensors, and drug delivery devices, on the other hand, are rigid, brittle, and water-hating, impossible to dissolve in the way hydrogels have traditionally been built.

A paper published today in Science from the UChicago Pritzker School of Molecular Engineering (PME) has solved this challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form. Led by Asst. Prof. Sihong Wang’s research group, the result is a bluish gel that flutters like a sea jelly in water but retains the immense semiconductive ability needed to transmit information between living tissue and machine.


New material from the UChicago Pritzker School of Molecular Engineering can create better brain-machine interfaces, biosensors, and pacemakers.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Mission Hospital is the first in California and among a select few in the world to offer, a revolutionary, noninvasive treatment for malignant and benign liver tumors. The procedure works by using high-energy ultrasound waves that convert to sonic beams and destroy liver tumors without a single incision.

Because the innovative procedure is noninvasive, it minimizes the risk of infection, bleeding and other complications. can be used to effectively treat liver tumors in patients who are not candidates for open surgery or have been told their liver tumor is inoperable. The procedure is compatible with chemotherapy and/or radiation therapy and can also be used to treat metastatic cancer that has spread to the liver.

During the procedure, targeted ultrasound waves form bubble clouds that implode and collapse rapidly, destroying only tumor cells. After tumors are liquefied by the sonic beam, only tiny molecules remain in the body. These microscopic fragments are too small to allow the cancer to spread and regrow.

Dr. Masayo Takahashi graduated from Kyoto University’s Faculty of Medicine in 1986. In 1992, she completed her Ph.D. in Visual Pathology at Kyoto University’s Graduate School of Medicine. She first worked as a clinician, but later became interested in research following her studies in the United States in 1995. In 2005, her lab became the first in the world to successfully differentiate neural retina from embryonic stem cells. She is currently the project leader of the Laboratory for Retinal Regeneration at the RIKEN Center for Developmental Biology (CDB).

Recently in Japan they restored vision of three people using puliportent stem cells.


Then, in March 2017, Dr. Takahashi and her team made another important step forward. While the 2014 surgery had used cells generated from the patient’s own tissues, Dr. Takahashi and her team succeeded this time in the world’s first transplantation of RPE cells generated from iPS cells that originated from another person (called “allogeneic transplantation”) to treat a patient with wet-type AMD. Currently, the patient is being monitored for the possibility of rejection, which is a risk of allogeneic transplantation. Regarding the significance of the operation, Dr. Takahashi explains that “allogeneic transplantation substantially reduces the time and cost required in producing RPE cells, creating opportunities for even more patients to undergo surgeries. Hearing patients’ eager expectations firsthand when working as a clinician has also been a significant motivation.”

Dr. Takahashi’s team is currently making preparations for clinical studies that will target retinitis pigmentosa, a hereditary eye disease, by transplanting photoreceptor cells. “Having my mind set on wanting to see applications of iPS cells in treatments as quickly as possible, I have been actively involved in the creation of the regulations for their practical applications in regenerative medicine. In Japan, where clinical studies and clinical trials can be conducted at the same time, there is significant merit in the fact that research can be carried out by doctors who also work in medical settings. This helps ensure that they proceed with a sense of responsibility and strong ethics. Our advanced clinical studies have attracted the attention of researchers working in regenerative medicine in various countries. I intend to maintain a rapid pace of research so that we can treat the illnesses of as many patients as possible.”

This unique material can behave like a fluid, flowing and deforming with minimal resistance, yet it can also instantly become rigid, acting like a solid. It’s called PAM (or Polycatenated Architected Material). Its unique structure, inspired by chain mail, features interlinked shapes forming intricate three-dimensional networks. Unlike traditional materials, which are either solid with fixed structures or granular with loose, independent particles, PAMs occupy a fascinating middle ground. When subjected to shear stress, for example, the interconnected components can slide past each other, offering little resistance, much like water or honey. However, when compressed, these same components lock together, creating a rigid structure. This transition between fluid and solid-like behavior is what makes PAMs so unique. PAMs represent a new class of matter, defying the traditional classification of materials as either solid or granular. They are a hybrid, bridging the gap between these two extremes. This dynamic behavior is achieved through the intricate design of PAMs. Researchers at Caltech create these materials using 3D printing. They begin by modeling the structures on a computer, mimicking crystal lattices but replacing the fixed particles with interconnected rings or cages. These designs are then brought to life using various materials, from polymers to metals. The resulting PAMs, often small cubes or spheres, undergo rigorous testing to understand their response to different forces. They are compressed, sheared, and twisted, revealing their unusual properties. The potential applications for PAMs are vast and varied. Their ability to absorb energy efficiently makes them ideal candidates for protective gear, such as helmets, potentially offering superior protection compared to current foam-based solutions. This same property could also be utilized in packaging and other applications requiring cushioning or stabilization. Experiments with microscale PAMs have shown that they respond to electrical charges, suggesting possibilities in biomedical devices and soft robotics. Researchers are also exploring the vast design space of PAMs, using advanced techniques like artificial intelligence to discover new configurations and functionalities. While still in its early stages, PAM research promises to revolutionize material science and engineering, opening up new possibilities for a wide range of applications.

Instagram: / hashem.alghaili.
Facebook: / sciencenaturepage.
Other channels: https://muse.io/hashemalghaili

Imagine smartphones that can diagnose diseases, detect counterfeit drugs or warn of spoiled food. Spectral sensing is a powerful technique that identifies materials by analyzing how they interact with light, revealing details far beyond what the human eye can see.

Traditionally, this technology required bulky, expensive systems confined to laboratories and industrial applications. But what if this capability could be miniaturized to fit inside a smartphone or ?

Researchers at Aalto University in Finland have combined miniaturized hardware and intelligent algorithms to create a powerful tool that is compact, cost-effective, and capable of solving real-world problems in areas such as health care, food safety and autonomous driving. The research is published in the journal Science Advances.

Researchers have used quantum physics and machine learning to quickly and accurately understand a mound of data – a technique, they say, could help extract meaning from gargantuan datasets.

Their method works on groundwater monitoring, and they’re trialling it on other fields like traffic management and medical imaging.

“Machine learning and artificial intelligence is a very powerful tool to look at datasets and extract features,” Dr Muhammad Usman, a quantum scientist at CSIRO, tells Cosmos.

In this study, we have demonstrated the crucial role of NAD+ homeostasis, particularly through the de novo synthesis pathway mediated by Qprt, in maintaining spermatogenesis with age. The deletion of Qprt led to progressive declines in NAD+ levels, particularly after 6 months of age, which were associated with significant defects in germ cell survival and mitochondrial function in spermatocytes. These disruptions manifested as impaired progression through meiosis, defective DNA double-strand break repair, and abnormal meiotic sex chromosome inactivation. Our findings also highlight the therapeutic potential of NAD+ precursor supplementation, as nicotinamide riboside effectively rescued the observed spermatogenic abnormalities in Qprt-deficient mice, emphasizing the importance of NAD+ in reproductive health and aging.

NAD+ can be synthesized through three pathways: the Preiss-Handler pathway, the salvage pathway, and the de novo pathway (Liu et al. 2018 ; Harjes 2019). In the de novo pathway, the essential amino acid tryptophan serves as a substrate, with Qprt catalyzing the formation of nicotinic acid mononucleotide, which is subsequently converted into NAD+ via a series of enzymatic reactions in the Preiss-Handler pathway. Coordinated regulation of these three pathways is crucial for maintaining intracellular NAD+ levels, which are essential for cellular function, a decline in NAD+ levels can lead to various pathological and physiological conditions (Minhas et al. 2019 ; Zhang et al. 2019a). In this study, we identified that Qprt, the rate-limiting enzyme in the NAD+ de novo synthesis pathway, is predominantly expressed in spermatocytes within the testes.