Toggle light / dark theme

AI-guided enzyme discovery enables 98.6% breakdown of polyurethane foam in hours

As the use of AI spreads through every industry and becomes more of a part of our lives every day, researchers are also looking into ways it can be used to solve some of the world’s biggest problems. One of these problems is the world’s reliance on plastics for making everything from clothing to medical supplies to food wrappers, which is creating a massive amount of non-biodegradable waste—with more and more piling on every day. Much of this ends up wreaking havoc on various ecosystems and creating an overabundance of microplastics that end up in our food and water supplies.

Clearly, there is a need for recycling these materials. However, plastics remain one of the most difficult materials to recycle efficiently. But now, a team of researchers might have found a way to facilitate the process with the help of AI. Their study, published in Science, details how a helped them find enzymes that can break down plastics faster and more efficiently than any they’ve found on their own.

Automated chloroplast screening platform speeds up crop trait development

Chloroplasts—the “light power plants” of plant cells—are increasingly the focus of synthetic biology. These organelles house the photosynthetic apparatus and host several metabolic pathways that are of great interest for engineering new traits. Gene insertion into chloroplasts is precise and carries a lower risk of transgene escape.

Despite this potential, chloroplast biotechnology remains in its infancy because standardized, scalable methods for rapid testing of diverse genetic parts have been missing. A research team from the Max Planck Institute for Terrestrial Microbiology in Marburg has now presented a micro‑algal platform that allows automated, fast, and large‑scale testing of chloroplast genetic modifications.

The study is published in the journal Nature Plants.

CERN’s electrostatic trap ‘recycles’ anions to illuminate the heaviest elements

From the burning of wood to the action of medicines, the properties and behavior of matter are governed by the way chemical elements bond with one another. For many of the 118 known elements, the intricate electronic structures of the atoms that are responsible for chemical bonding are well understood. But for the superheavy elements lying at the far edge of the periodic table, measuring even a single property of these exotic species is a major challenge.

In a new paper published in Nature Communications, a team of researchers working at the ISOLDE facility at CERN report a novel technique that could help unlock the chemistry of (super)heavy elements and has potential applications in fundamental physics research and medical treatments.

Superheavy elements are highly unstable and can only be produced in accelerator laboratories in minute amounts. This is why researchers tend to first perfect their techniques on elements that are stable and lighter.

Turning on an immune pathway in tumors could lead to their destruction

Activating this , known as the cGAS-STING pathway, worked even better when combined with existing immunotherapy drugs known as checkpoint blockade inhibitors, in a study of mice. That dual treatment was successfully able to control tumor growth.

The researchers turned on the cGAS-STING pathway in immune cells using messenger RNA delivered to . This approach may avoid the of delivering large doses of a STING activator, and takes advantage of a natural process in the body. This could make it easier to develop a treatment for use in patients, the researchers say.

Innovative Treatment Regrows 90% of Lost Hair

Hair loss affects millions of people worldwide. Although treatments do exist, these solutions are costly and not always effective. Looking for a more lasting and effective solution, scientists have turned their attention to understanding the molecular mechanisms that regulate hair growth, leading to a new frontier in hair regeneration: dermal exosomes.

Experts feared a disease rebound after COVID-19—it didn’t happen

As the COVID-19 lockdown in 2020 stretched on, scientists watched for all sorts of unintended effects, from social to economic to environmental.

But the experts who predict wondered specifically whether other than COVID-19 would surge after the prolonged isolation of the population. Would cause us to have less immunity to common diseases? Would those diseases rebound with deadly consequences?

In a paper published in Science, the University of Georgia’s Tobias Brett and Pejman Rohani explored which infectious diseases were impacted by COVID-19 control measures and, of those, which rebounded. They found airborne diseases were most likely to rebound—but not as much as some feared. Surprisingly, the incidence of sexually transmitted diseases remained low, even long after -era behaviors changed.

Functionally dominant hotspot mutations of mitochondrial ribosomal RNA genes in cancer

To study selection for somatic single nucleotide variants (SNVs) in tumor mtDNA, we identified somatic mtDNA variants across primary tumors from the GEL cohort (n = 14,106). The sheer magnitude of the sample size in this dataset, in conjunction with the high coverage depth of mtDNA reads (mean = 15,919×), enabled high-confidence identification of mtDNA variants to tumor heteroplasmies of 5%. In total, we identified 18,104 SNVs and 2,222 indels (Supplementary Table 1), consistent with previously reported estimates of approximately one somatic mutation in every two tumors1,2,3. The identified mutations exhibited a strand-specific mutation signature, with a predominant occurrence of CT mutations on the heavy strand and TC on the light strand in the non-control region that was reversed in the control region2 (Extended Data Fig. 1a, b). These mutations occur largely independently of known nuclear driver mutations, with the exception of a co-occurrence of TP53 mutation and mtDNA mutations in breast cancer (Q = 0.031, odds ratio (OR) = 1.43, chi-squared test) (Extended Data Fig. 2a and Supplementary Table 4).

Although the landscape of hotspot mutations in nuclear-DNA-encoded genes is relatively well described, a lack of statistical power has impeded an analogous, comprehensive analysis in mtDNA16,17. To do so, we applied a hotspot detection algorithm that identified mtDNA loci demonstrating a mutation burden in excess of the expected background mutational processes in mtDNA (Methods). In total, we recovered 138 unique statistically significant SNV hotspots (Q 0.05) across 21 tumor lineages (Fig. 1a, b and Supplementary Table 2) and seven indel hotspots occurring at homopolymeric sites in complex I genes, as previously described by our group (Extended Data Fig. 2b and Supplementary Table 3). SNV hotspots affected diverse genetic elements, including protein-coding genes (n = 96 hotspots, 12 of 13 distinct genes), tRNA genes (n = 8 hotspots, 6 of 22 distinct genes) and rRNA genes (n = 34 hotspots, 2 of 2 genes) (Fig. 1b, c, e).

Microgravity Muscle Printing Paves Way for Space Biomanufacturing

The study notes in its conclusions, “We have presented G-FLight printing as an effective tool for the rapid gravity-independent fabrication of aligned tissues, focusing on muscle tissue as an application.”


Can muscle tissue be 3D-printed in outer space to improve astronaut health? This is what a recent study published in Advanced Science hopes to address as a team of scientists investigated how human tissue can be manufactured in space. This study has the potential to help scientists, researchers, and the public better understand new methods for not only aiding in long-term space travel but also combating diseases on Earth.

For the study, the researchers used a series of parabolic flights to test G-FLight (Gravity-independent Filamented Light), which is a novel 3D printing biomanufacturing system capable of producing muscle cells and fibers in a matter of seconds. The purpose of the parabolic flights was to simulate microgravity, which is produced by the airplane sharply diving after gradually rising in altitude. The goal of the study was to ascertain if G-Flight could successfully 3D-print muscle fibers under microgravity conditions. In the end, the researchers found that G-FLight successfully produced muscle fibers under microgravity conditions during parabolic flights.

Evolutionary comparison points to pigs as superior models for human pancreas and diabetes research

Pancreas development in pigs resembles humans much more closely than does the established mouse model. An international team headed by Helmholtz Munich and the German Center for Diabetes Research (DZD) has now produced a comprehensive evolutionary comparison of single-cell atlases of pancreas development. The results open up new prospects for regenerative therapies.

For decades, the pancreas and its development have been a major focus of diabetes and . Until now, the science was almost exclusively based on mouse models. However, mice differ from humans in many respects—from developmental duration to metabolism and .

“Particularly for complex diseases such as diabetes mellitus, we need models that truly resemble humans,” therefore emphasizes Prof. Heiko Lickert. The DZD researcher is the director of the Institute of Diabetes and Regeneration Research at Helmholtz Munich and professor at the Technical University of Munich (TUM).

The right dose for the brain: Selenomethionine’s role in protecting dopaminergic neurons

Dopamine is often called the brain’s “motivation molecule,” but for me, it represents something deeper, a window into how fragile our neurons can be. The cells that produce dopamine, known as dopaminergic neurons, are among the first to die in Parkinson’s disease, leading to the motor symptoms that gradually rob patients of movement and independence.

To understand what makes these neurons so vulnerable, I used an in-vitro model where I exposed N27 dopaminergic cells to 6-hydroxydopamine (6-OHDA), a toxin that triggers oxidative stress, like what occurs in the Parkinsonian brain. Then, I introduced Selenomethionine (SeMet), an organic form of selenium, to test whether this compound could counteract the damage and help the neurons survive.

Selenium has long intrigued scientists for its paradoxical nature. It is a trace element essential for antioxidant defense, yet in excess it can become toxic. I wanted to see whether a specific range of SeMet concentrations could offer meaningful protection without tipping that balance. My study, carried out at Charles University and the National Institute of Mental Health (NUDZ) in the Czech Republic, set out to define that “safe and effective window.” It is published in the journal In vitro models.

/* */