Toggle light / dark theme

Northwestern University engineers have developed a pacemaker so tiny that it can fit inside the tip of a syringe — and be non-invasively injected into the body.

Smaller than a single grain of rice, the pacemaker is paired with a small, soft, flexible, wireless, wearable device that mounts onto a patient’s chest to control pacing. When the wearable device detects an irregular heartbeat, it automatically shines a light pulse to activate the pacemaker. These short pulses— which penetrate through the patient’s skin, breastbone and muscles — control the pacing. #Repost


Although it can work with hearts of all sizes, the pacemaker is particularly well-suited to the tiny, fragile hearts of newborn babies with congenital heart defects.

Designed for patients who only need temporary pacing, the pacemaker simply dissolves after it’s no longer needed. All the pacemaker’s components are biocompatible, so they naturally dissolve into the body’s biofluids, bypassing the need for surgical extraction.

Four children have gained life-changing improvements in sight following treatment with a pioneering new genetic medicine through Moorfields Eye Hospital and UCL Institute of Ophthalmology.

The work was funded by the NIHR Research Professorship, Meira GTx and Moorfields Eye Charity.

The 4 children were born with a severe impairment to their sight due to a rare genetic deficiency that affects the ‘AIPL1’ gene. The defect causes the retinal cells to malfunction and die. Children affected are only able to distinguish between light and darkness. They are legally certified as blind from birth.

The new treatment is designed to enable the retinal cells to work better and to survive longer. The procedure, developed by UCL scientists, consists of injecting healthy copies of the gene into the retina through keyhole surgery. These copies are contained inside a harmless virus, so they can penetrate the retinal cells and replace the defective gene.

The condition is very rare, and the first children identified were from overseas. To mitigate any potential safety issues, the first 4 children received this novel therapy in only one eye.

The eye gene therapy was delivered via keyhole surgery at Great Ormond Street Hospital. The children were assessed in the NIHR Moorfields Clinical Research Facility, and the NIHR Moorfields Biomedical Research Centre provided infrastructure support for the research.


Complete the security check before continuing. This step verifies that you are not a bot, which helps to protect your account and prevent spam.

In a large population-based cohort of individuals who underwent electron-beam CT, coronary artery calcium score was independently associated with incident lung cancer diagnosis but did not demonstrate potential to improve risk stratification in lung cancer screening.

The potential role of vitamin D in preventing and treating colorectal cancer (CRC) has attracted growing research interest – especially as CRC rates are rising, particularly among younger adults. This isn’t a new area of study. Low vitamin D levels have long been linked to a higher risk of developing colorectal cancer.

One large study involving over 12,000 participants found that people with low blood levels of vitamin D had a 31 per cent greater risk of developing CRC compared to those with higher levels. Similarly, another study reported a 25 per cent lower CRC risk among individuals with high dietary vitamin D intake.

Data from the Nurses’ Health Study – a long-term investigation of American nurses – showed that women with the highest vitamin D intake had a 58 per cent lower risk of developing colorectal cancer compared to those with the lowest intake.

The common cold sore virus, which is often caught in childhood, usually stays in the body for life—quietly dormant in the nerves. Now and then, things like stress, illness or injury can trigger it, bringing on a cold sore in some people. But this same virus—called herpes simplex virus type 1—may also play an important role in something far more serious: Alzheimer’s disease.

Over 30 years ago, my colleagues and I made a surprising discovery. We found that this cold sore virus can be present in the brains of older people. It was the first clear sign that a virus could be quietly living in the brain, which was long thought to be completely germ-free—protected by the so-called “blood-brain barrier.”

Then we discovered something even more striking. People who have a certain version of a gene (called APOE-e4) that increases their risk of Alzheimer’s, and who have been infected with this virus, have a risk that is many times greater.