Signal processing is key to communications and video image processing for astronomy, medical diagnosis, autonomous driving, big data and AI. Menxi Tan and colleagues report a photonic processor operating at 17Tb/s for ultrafast robotic vision and machine learning.
Category: biotech/medical – Page 449
A research team led by Prof. Sun Zhong at Peking University has reported an analog hardware solution for real-time compressed sensing recovery. It has been published as an article titled, “In-memory analog solution of compressed sensing recovery in one step” in Science Advances.
In this work, a design based on a resistive memory (also known as memristor) array for performing instantaneous matrix-matrix-vector multiplication (MMVM) is introduced. Based on this module, an analog matrix computing circuit that solves compressed sensing (CS) recovery in one step (within a few microseconds) is disclosed.
CS has been the cornerstone of modern signal and image processing, across many important fields such as medical imaging, wireless communications, object tracking, and single-pixel cameras. In CS, sparse signals can be highly undersampled in the front-end sensor, which breaks through the Nyquist rate and thus significantly improving sampling efficiency.
A game-changer in prosthetics has been introduced to the world, and for the first time, amputees are regaining sensation through an electrical signal from their prosthetic arm. Max Ortiz-Catalan, a professor of bionics, explains the process of implanting these mind-controlled bionic arms through direct skeletal attachment. The researcher takes us through every step of this groundbreaking advancement in bionic medicine, from surgically implanting electrodes to fitting the prosthesis and training for everyday use.\r\
\r\
Director: Lisandro Perez-Rey\r\
Editor: Jordan Calig\r\
Expert: Prof. Max Ortiz Catalan\r\
Line Producer: Joseph Buscemi\r\
Associate Producer: Kameryn Hamilton\r\
Production Manager: D. Eric Martinez\r\
Production Coordinator: Fernando Davila\r\
Post Production Supervisor: Alexa Deutsch\r\
Post Production Coordinator: Ian Bryant\r\
Supervising Editor: Doug Larsen\r\
Assistant Editor: Justin Symonds\
\
Still haven’t subscribed to WIRED on YouTube? ►► http://wrd.cm/15fP7B7 \r\
Listen to the Get WIRED podcast ►► https://link.chtbl.com/wired-ytc-desc\r\
Want more WIRED? Get the magazine ►► https://subscribe.wired.com/subscribe…\r\
\r\
Follow WIRED:\r\
Instagram ►► / wired \r\
Twitter ►► / wired \r\
Facebook ►► / wired \r\
Tik Tok ►► / wired \r\
\r\
Get more incredible stories on science and tech with our daily newsletter: https://wrd.cm/DailyYT\r\
\r\
Also, check out the free WIRED channel on Roku, Apple TV, Amazon Fire TV, and Android TV. \r\
\r\
ABOUT WIRED\r\
WIRED is where tomorrow is realized. Through thought-provoking stories and videos, WIRED explores the future of business, innovation, and culture.
Harvard researchers have realized a key milestone in the quest for stable, scalable quantum computing, an ultra-high-speed technology that will enable game-changing advances in a variety of fields, including medicine, science, and finance.
The team, led by Mikhail Lukin, the Joshua and Beth Friedman University Professor in physics and co-director of the Harvard Quantum Initiative, has created the first programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations, a vast improvement over prior efforts.
Published in Nature, the work was performed in collaboration with Markus Greiner, the George Vasmer Leverett Professor of Physics; colleagues from MIT; and QuEra Computing, a Boston company founded on technology from Harvard labs.
Scientists have now leveraged deep learning to discover a new class of compounds that can kill a drug-resistant bacterium.
Using deep learning models, scientists have identified a new class of antibiotic compounds that can work against resistant strains like MRSA.
A team of international scientists have developed an ultra-high speed signal processor that can analyze 400,000 real time video images concurrently, according to a paper published in Communications Engineering.
The team, led by Swinburne University of Technology’s Professor David Moss, have developed a processor that operates more than 10,000 times faster than typical electronic processors that operate in Gigabyte/s, at a record 17 Terabits/s (trillion bits per second).
The technology has profound implications for the safety and efficiency of driverless cars, medical imaging and could help find habitable planets beyond our solar system.
A system called Coscientist scours the Internet for instructions, then designs and executes experiments to synthesize molecules.
A “chaperone” molecule that slows the formation of certain proteins reversed disease signs, including memory impairment, in a mouse model of Alzheimer’s disease, according to a study from researchers at the Perelman School of Medicine at the University of Pennsylvania.
In the study, published in Aging Biology, researchers examined the effects of a compound called 4-phenylbutyrate (PBA), a fatty-acid molecule known to work as a “chemical chaperone” that inhibits protein accumulation. In mice that model Alzheimer’s disease, injections of PBA helped to restore signs of normal proteostasis (the protein regulation process) in the animals’ brains while also dramatically improving their performance on a standard memory test, even when administered late in the disease course.
“By generally improving neuronal and cellular health, we can mitigate or delay disease progression,” said study senior author Nirinjini Naidoo, Ph.D., a research associate professor of Sleep Medicine. “In addition, reducing proteotoxicity— irreparable damage to the cell that is caused by an accumulation of impaired and misfolded proteins—can help improve some previously lost brain functions.”
Impressive! It’ll take time but it shows promise. And it’s simpler than the more expensive alternative.
Scientists are devising ways to edit the genomes of immune cells without having to extract them from those being treated.
Neurons communicate through chemical signals known as neurotransmitters. Researchers at St. Jude Children’s Research Hospital, leveraging their expertise in structural biology, have successfully elucidated the structures of the vesicular monoamine transporter 2 (VMAT2), a key component of neuronal communication.
By visualizing VMAT2 in different states, scientists now better understand how it functions and how the different shapes the protein takes influence drug binding — critical information for drug development to treat hyperkinetic (excess movement) disorders such as Tourette syndrome. The work was recently published in the journal Nature.