Toggle light / dark theme

Have you ever imagined listening to the brain’s activity as it unfolds in real-time? Researchers from Columbia University have pioneered a technique that transforms complex neuroimaging data into a captivating audiovisual experience, akin to watching a movie with a musical soundtrack. This novel approach allows scientists to ‘see’ and ‘hear’ the brain’s intricate workings, offering fresh insights into its behavior during various tasks.

The details of their work have been published in the journal PLOS One.

The motivation behind this study stems from a growing challenge in neuroscience: the vast amount of data generated by advanced brain imaging techniques. Technologies like functional magnetic resonance imaging (fMRI) and wide-field optical mapping (WFOM) capture the dynamic, multi-dimensional activities of the brain, revealing patterns of neurons firing and blood flow changes.

Injuries in the central nervous system heal poorly because cavities scar. Researchers hope to remedy this problem by filling the cavities in such a way that stem cells feel comfortable in them.

Researchers from Bochum and Dortmund have created an artificial cell environment that could promote the regeneration of nerves. Usually, injuries to the brain or spinal cord don’t heal easily due to the formation of fluid-filled cavities and scars that prevent tissue regeneration. One starting point for medical research is therefore to fill the cavities with a substance that offers neural stem cells optimal conditions for proliferation and differentiation. The team from Ruhr University Bochum and TU Dortmund University, both in Germany, showed that positively charged hydrogels can promote the survival and growth of stem cells.

Dr. Kristin Glotzbach and Professor Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology in Bochum cooperated with Professor Ralf Weberskirch and Dr. Nils Stamm from the Faculty of Chemistry and Chemical Biology at TU Dortmund University. The team describes the findings in the American Chemical Society Journal Biomaterials Science and Engineering from January 16, 2024.

Year 2020 face_with_colon_three


There’s a new disease-detecting technology in the lab of Sanjiv “Sam” Gambhir, MD PhD, and its No. 1 source of data is number one. And number two.

It’s a smart toilet. But not the kind that lifts its own lid in preparation for use; this toilet is fitted with technology that can detect a range of disease markers in stool and urine, including those of some cancers, such as colorectal or urologic cancers. The device could be particularly appealing to individuals who are genetically predisposed to certain conditions, such as irritable bowel syndrome, prostate cancer or kidney failure, and want to keep on top of their health.

“Our concept dates back well over 15 years,” said Gambhir, professor and chair of radiology. “When I’d bring it up, people would sort of laugh because it seemed like an interesting idea, but also a bit odd.” With a pilot study of 21 participants now completed, Gambhir and his team have made their vision of a precision health-focused smart toilet a reality.

Summary: Researchers developed an innovated a technique to convert complex neuroimaging data into audiovisual formats. By transforming brain activity and blood flow data from behaviors like running or grooming in mice into synchronized piano and violin sounds, accompanied by video, they offer an intuitive approach to explore the brain’s intricate workings.

This method not only makes it easier to identify patterns in large datasets but also enhances the understanding of the dynamic relationship between neuronal activity and behavior. The toolkit represents a significant step forward in neuroscientific research, enabling scientists to intuitively screen and interpret vast amounts of brain data.

The team found that administering an HDAC inhibitor orally effectively halted sperm production and fertility in mice while preserving the sex drive.


Researchers are grappling with the challenge of developing effective male contraceptives as existing attempts to block sperm production, maturation, or fertilization have fallen short, either offering incomplete protection or leading to severe side effects.

Now, a team of researchers at the Salk Institute in the US has developed a novel approach to halting sperm production, which is both non-hormonal and reversible, marking a significant advancement in male contraception research.

Researchers have identified a novel protein complex governing gene expression in sperm production. By administering an existing class of drugs, called HDAC (histone deacetylase) inhibitors to male mice, they effectively disrupt this complex, leading to infertility without impacting libido. This breakthrough suggests a promising avenue for non-hormonal and reversible male contraception, according to the team.

Imagine an army of self-propelling, radioisotope-covered particles 2,500 to 10,000 times smaller than a speck of dust that, upon injection into the body, search for and attach themselves to cancerous tumours, destroying them. Sounds like science fiction? Not so for mice with bladder cancer.

Researchers in Spain report that nanoparticles containing radioactive iodine and which propel themselves upon reaction with urea have the ability to distinguish cancerous bladder tumours from healthy tissue. These “nanobots” penetrate the tumour’s extracellular matrix and accumulate within it, enabling the radionuclide therapy to reach its precise target. In a study conducted at the Institute for Bioengineering of Catalonia (IBEC) in Barcelona, mice receiving a single dose of this treatment had a 90% reduction in the size of bladder tumours compared with untreated animals.

This novel approach may one day revolutionize the treatment of bladder cancer. Bladder cancer is the tenth most common cancer in the world, with over 600,000 new cases diagnosed in 2022 and more than 220,000 deaths globally, according to the World Health Organization’s Global Cancer Observatory.