Toggle light / dark theme

Anti-neuroinflammatory natural products from isopod-related fungus now accessible via chemical synthesis

“Herpotrichone” is a natural substance that has been evaluated highly for its excellent ability to suppress inflammation in the brain and protect nerve cells, displaying significant potential to be developed as a therapeutic agent for neurodegenerative brain diseases such as Alzheimer’s disease and Parkinson’s disease. This substance could only be obtained in minute quantities from fungi that are symbiotic with isopods. However, KAIST researchers have succeeded in chemically synthesizing this rare natural product, thereby presenting the possibility for the development of next-generation drugs for neurodegenerative diseases.

A research team led by Professor Sunkyu Han of the Department of Chemistry successfully synthesized the natural anti-neuroinflammatory substances ‘herpotrichones A, B, and C’ for the first time. The paper is published in the Journal of the American Chemical Society.

Herpotrichone natural products are substances obtainable only in minute quantities from Herpotrichia sp. SF09, a symbiotic pill bug fungus, and possesses a unique 6÷6÷6÷6÷3 pentacyclic framework consisting of five fused rings (four six-membered and one three-membered ring).

Machine learning model helps scientists understand deadly cone snail toxins

Marine cone snails are host to a family of dangerous neurotoxins. Very little is known about how those toxins interact with the human body, making this an area of interest for medical drug research and an area of concern in national security spaces. For the first time, a team at Los Alamos National Laboratory has successfully trained a machine learning model that predicts how alpha conotoxins bind to specific human receptor subtypes, which could help researchers develop lifesaving anti-toxins.

“Because of the diversity and complexity of natural conotoxins, it is estimated that only 2% of them have been sequenced,” said Gnana Gnanakaran, theoretical biologist at Los Alamos. “No antidotes exist for conotoxins, but by using machine learning to predict conotoxin binding, we now have the ability to develop tools to understand and respond to these threats.”

The deadly secretions issued by any one of the more than 800 cone snail species represent a conglomeration of more than 1 million natural conotoxins. The research team concentrated their machine learning work on alpha conotoxins, a particularly prevalent and deadly conotoxin family.

Is the Multiverse Real? New Quantum Tech Might Finally Tell Us

Imagine a gamma ray laser that safely eliminates cancer cells while leaving healthy tissue unharmed. A University of Colorado Denver engineer is close to providing researchers with a powerful new tool that could bring science fiction concepts closer to reality. Consider the potential of a gamm

Vagus nerve stimulation paired with meditation increases self-compassion and mindfulness benefits

Stimulating the vagus nerve with a device attached to the outer ear can help make compassion meditation training more effective at boosting people’s capacity for self-kindness and mindfulness, finds a new study led by University College London (UCL) researchers.

The study, published in Psychological Medicine, adds to evidence of the potential benefits of stimulating this key nerve that connects the brain with major organs in the chest and abdomen.

The plays a crucial role in the “rest-and-digest” (parasympathetic) system, counteracting the “fight-or-flight” (sympathetic) , and allows the brain to communicate with all major organs in the body. By transmitting signals from the body up to the brain, the vagus nerve can also regulate a range of psychological processes, including some involved in social interactions and emotional control.

Autologous Hematopoietic Stem Cell Transplantation for Paraneoplastic Cerebellar Degeneration

Background and ObjectivesThe aim of this study was to describe 2 patients with paraneoplastic cerebellar degeneration (PCD) treated with autologous hematopoietic stem cell transplantation (AHSCT).MethodsOff-label AHSCT was performed at Hospital Clinic…

Scientists just cracked the code to editing entire chromosomes flawlessly

A group of Chinese scientists has created powerful new tools that allow them to edit large chunks of DNA with incredible accuracy—and without leaving any trace. Using a mix of advanced protein design, AI, and clever genetic tweaks, they’ve overcome major limitations in older gene editing methods. These tools can flip, remove, or insert massive pieces of genetic code in both plants and animals. To prove it works, they engineered rice that’s resistant to herbicides by flipping a huge section of its DNA—something that was nearly impossible before.

Pharmacy Professor Works to Unlock Secrets of Cellular Sugar

OXFORD, Miss. – A University of Mississippi pharmacy professor will study how sugar molecules on proteins could lead to new ways to detect and treat diseases using a prestigious grant from the National Science Foundation.

The NSF has awarded a Faculty Early Career Development Program grant to Jing Li, assistant professor of medical chemistry and research and assistant professor in the Research Institute of Pharmaceutical Science.

Li will use computer modeling to study the effects of sugar molecules connected to proteins. These molecules – known as glycosylation – affect ion channels that play a crucial role in brain activity, heartbeats and muscle movement.

Sea Cucumbers Could Hold Key to Stopping Cancer Spread

OXFORD, Miss. – Sea cucumbers are the ocean’s janitors, cleaning the seabed and recycling nutrients back into the water. But this humble marine invertebrate could also hold the key to stopping the spread of cancer.

A sugar compound found in sea cucumbers can effectively block Sulf-2, an enzyme that plays a major role in cancer growth, according to a University of Mississippi-led study published in Glycobiology.

“Marine life produces compounds with unique structures that are often rare or not found in terrestrial vertebrates,” said Marwa Farrag, a fourth-year doctoral candidate in the UM Department of BioMolecular Sciences.

“And so, the sugar compounds in sea cucumbers are unique. They aren’t commonly seen in other organisms. That’s why they’re worth studying.”

Farrag, a native of Assiut, Egypt, and the study’s lead author, worked with a team of researchers from Ole Miss and Georgetown University on the project.

/* */