Toggle light / dark theme

New rare form of hereditary colon cancer identified

Researchers have discovered that mutation in a gene can led to a form of hereditary colon cancer which was not identified earlier. The researchers discovered genetic changes in the MSH3 gene in patients and identified a new form of colon cancer.

“The knowledge about molecular mechanisms which lead to cancer is also a precondition for the development of new targeted drugs,” said Stefan Aretz from University of Bonn Hospital in Germany.

The formation of large numbers of polyps in the colon has a high probability of developing into colon cancer, if left untreated.

New theory explains how beta waves arise in the brain

Beta rhythms, or waves of brain activity with an approximately 20 Hz frequency, accompany vital fundamental behaviors such as attention, sensation and motion and are associated with some disorders such as Parkinson’s disease. Scientists have debated how the spontaneous waves emerge, and they have not yet determined whether the waves are just a byproduct of activity, or play a causal role in brain functions. Now in a new paper led by Brown University neuroscientists, they have a specific new mechanistic explanation of beta waves to consider.

The new theory, presented in the Proceedings of the National Academy of Sciences, is the product of several lines of evidence: external brainwave readings from human subjects, sophisticated computational simulations and detailed electrical recordings from two mammalian model organisms.

“A first step to understanding beta’s causal role in behavior or pathology, and how to manipulate it for optimal function, is to understand where it comes from at the cellular and circuit level,” said corresponding author Stephanie Jones, research associate professor of neuroscience at Brown University. “Our study combined several techniques to address this question and proposed a novel mechanism for spontaneous neocortical beta. This discovery suggests several possible mechanisms through which beta may impact function.”

Yale team designs gene modification system

A Yale research team has designed a system to modify multiple genes in the genome simultaneously, while also minimizing unintended effects. The gene-editing “toolbox” provides a user-friendly solution that scientists can apply to research on cancer and other disciplines, according to a news release from Yale.

The study was published on July 26 in Nucleic Acids Research.

The news release states that, with modern genetic engineering techniques, researchers can edit genes in experiments. This allows researchers to study important disease-related genes and may ultimately allow them to treat genetic diseases by making edits in specific sites of the human genome. However, progress has been hampered by several challenges, including the editing of unintended sites — referred to as off-target effects.

U.S. wary on biotech advances; gene editing, CRISPR ‘raising urgency’

Hmmm.


We can rebuild him; we have the technology—but Americans question if we should in a new survey designed to assess attitudes to modern biotechnology advances.

A new report, based on a survey of 4,700 U.S. adults coming out of the Pew Research Center, looked at a range of views on certain advances in biology, with opinions split on the ethics and long-term problems associated with enhancing human capacity.

When asked about gene editing, the majority of those surveyed, 68%, said they would be “very” or “somewhat” worried about its implications.

Versatile microrobotics using simple modular subunits

The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

A bioink

Future Science Group (FSG) today announced the publication of a new article in Future Science OA looking to identify and define key terms associated with bioinks and bioprinting.

The use of 3D printing technologies for medical applications is a relatively new and rapidly expanding field, and is being approached in a multi-disciplinary manner. This has led to overlapping and ambiguous definitions within the field as a whole, and confusion over some terms, for example the prefix of ‘bio-‘. This new piece from William Whitford (GE Healthcare Life Sciences, USA) and James B. Hoying (Advanced Solutions Life Sciences, USA) introduces common definitions for 3D bioprinting-related terms, putting them into context. Terms defined within the article include 3D and 4D printing, bioadditive manufacturing, biofabrication, biomanufacturing, bioprinting, biomimetic printing and bioinks, among others.

“Additive manufacturing has transformed our approach to production in many ways,” notes Whitford. “There is now rapid development in the bioresearch, diagnostic and therapeutic applications for 3D printing. It’s difficult to even keep abreast of the number and types of relevant printing technologies, applications and vocabulary. We here identify some of the terms recently coined in this arena.”

/* */