Toggle light / dark theme

Donald J. Cram, a Nobel Prize-winning chemist who taught andconducted research at UCLA for more than 50 years and is remembered bythousands of undergraduates for singing and playing guitar in class, died ofcancer June 17 at his home in Palm Desert. He was 82.

A renowned scientist who was as comfortable riding the waveswith friends in the San Onofre Surfing Club as he was in his lab at UCLAconstructing complex molecular models, Cram won the Nobel Prize in 1987 and theNational Medal of Science in 1993 for his work in host-guest chemistry, a fieldhe helped to create. In 1998, he wasranked among the 75 most important chemists of the past 75 years byChemical and Engineering News.

“DonaldCram stands alone in the incredible variety, beauty and depth of hisaccomplishments,” read the citation for Cram’s National Medal of Science. “His investigations have helped give thisscience its form and sophistication. Hetruly brought art to science by making his science an art.”

Penn Engineers have modified lipid nanoparticles (LNPs) — the revolutionary technology behind the COVID-19 mRNA vaccines — to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how peptides — short strings of amino acids — can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the endothelial cells that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

(FOX 2) — Three more cases of bird flu have been detected in Michigan after officials confirmed the presence of highly pathogenic avian influenza across two counties.

The Michigan Department of Agriculture and Rural Development is monitoring outbreaks at two commercial poultry facilities in Ottawa County as well as an outbreak at a backyard flock in Jackson County.

This is the first case of HPAI in Jackson since the outbreak was first reported in Michigan in 2022.

Link :


Ever since then, researchers have marveled at the bedbug’s resilience. No matter what kind of chemical insecticide we throw at it, they manage to survive. This is due in large part to its development of insecticide resistance. Recent research conducted by Hidemasa Bono at Hiroshima University found that a series of genetic mutations explain the bedbug’s resistance to insecticides.

To figure that out, Bono and his team took a peek at the genome of an insecticide-resistant bedbug. They then compared it to bedbug samples collected in 2010 from a hotel in Hiroshima, along with wild bedbugs dating back to the 1950s. They used a technique called long-read sequencing to create nearly free and nearly error-free genomic maps to compare the various bedbugs across time. This allowed them to see several different mutations across the three types of bedbugs.

They found that the bedbug that came from the hotel had 19,895 times more resistance to one of the most common types of insecticide, pyrethroids, than the nonresistant genome. All told, they identified 729 resistant specific mutations. Some of these mutations are related directly to DNA damage response, cell cycle regulation, and insulin metabolism.

Join my AI Academy — https://www.skool.com/postagiprepardness.
🐤 Follow Me on Twitter https://twitter.com/TheAiGrid.
🌐 Checkout My website — https://theaigrid.com/

00:01 New Chinese Humanoid Robot (LimX Dynamics)
01:47 Artificial Superintelligence (ASI) Discussion.
03:57 Sam Altman’s 2025 Predictions.
06:53 Geoffrey Hinton Supports Elon Musk’s Lawsuit Against OpenAI
09:11 O1 Model Surpasses Doctors in Diagnoses.
12:09 DeepSeek V3: A Cost-Effective Alternative to GPT-4
14:53 “Reproduce” Paper: Recreating OpenAI’s Reasoning.
15:41 Meta’s Large Concept Models (LCMs)
17:42 AGI Release Insights from OpenAI Employee.
19:45 Google CEO Gears Up for a Big 2025
23:28 Alibaba’s 70B Model.
24:30 OpenAI’s AGI Definition: $100 Billion in Profits.
25:24 Matrix One Humanoid Robot.

Links From Todays Video:

Chinese LimX humanoid robot CL2 reminds me of the new Atlas model
byu/torb insingularity

https://gizmodo.com/godfather-of-ai-throws-support-behind-el…2000544349

A new study shows that intelligence is best predicted by global brain connectivity, not just specific regions, indicating a more holistic neural basis for cognition. They examined fluid, crystallized, and general intelligence using fMRI data, finding that general intelligence had the strongest predictive power.

The human brain is the central organ that controls our body. It processes sensory information and enables us to think, make decisions, and store knowledge. Despite its remarkable capabilities, it is paradoxical how much remains unknown about this intricate organ.

Jonas Thiele and Dr. Kirsten Hilger, who leads the “Networks of Behavior and Cognition” research group at the Department of Psychology I at Julius-Maximilians-Universität Würzburg (JMU), are dedicated to unraveling the mysteries of the brain. Their latest research has been published in the scientific journal PNAS Nexus.

Microgravity is known to affect muscles, bones, the immune system, and cognition, but its specific effects on the brain remain largely unexplored. To investigate this, scientists from Scripps Research partnered with the New York Stem Cell Foundation to send tiny clusters of brain cells, known as “organoids,” to the International Space Station (ISS). These organoids were derived from stem cells and designed to mimic certain aspects of brain development.

Remarkably, the organoids returned from their month-long stay in orbit still healthy. However, they exhibited accelerated maturation compared to identical organoids grown on Earth. The space-exposed cells progressed closer to becoming fully developed neurons and showed early signs of specialization. These findings, recently published in Stem Cells Translational Medicine, offer new insights into how space travel might influence neurological development and brain function.

“The fact that these cells survived in space was a big surprise,” says co-senior author Jeanne Loring, PhD, professor emeritus in the Department of Molecular Medicine and founding director of the Center for Regenerative Medicine at Scripps Research. “This lays the groundwork for future experiments in space, in which we can include other parts of the brain that are affected by neurodegenerative disease.”