Toggle light / dark theme

Gene therapy delivery device could allow for personalized nanomedicines on-demand

A new gene therapy delivery device could let hospital pharmacies make personalized nanomedicines to order. This democratized approach to precision medicine, as published in Frontiers in Science, could revolutionize how hospitals treat rare diseases, even in low-resource settings.

Rare diseases affect millions worldwide, yet the one-size-fits-all model of drug development leaves patients with few treatment options. Now a European research project called NANOSPRESSO aims to tip the balance in patients’ favor by boosting access to low-cost bespoke gene and RNA therapies.

The prototype NANOSPRESSO device combines two proven technologies— and lipid nanoparticles—into a portable manufacturing unit. Hospital pharmacists could use the unit to prepare sterile, injectable nanomedicines tailored to the specific genetic abnormality causing the patient’s condition, bypassing the need for centralized drug production.

Antibiotics and energy inhibitors effectively kill aggressive melanoma cells by blocking mitochondrial pathways

Researchers have discovered that the most aggressive melanomas, the deadliest form of skin cancer, overactivate two key processes in mitochondria, the components of cells that provide energy. Blocking these pathways with currently available drugs effectively killed melanoma cells.

The findings are published in Cancer.

By mapping the proteins expressed in 151 tumor and normal skin samples, investigators found that the most aggressive melanomas hyper-activate the machinery that builds and the mitochondrial system that turns nutrients into energy.

Scientists reveal how diverse cell types are produced in developing embryos

A team of scientists at the MRC Laboratory of Medical Sciences (LMS) has uncovered a previously unknown mechanism that controls how genes are switched “on” and “off” during embryonic development. Their study sheds light on how diverse cell types are produced in developing embryos.

The research, published in Developmental Cell, was led by Dr. Irène Amblard and Dr. Vicki Metzis from the Development and Transcriptional Control group, in collaboration with LMS facilities and the Chromatin and Development and Computational Regulatory Genomics groups.

All cells contain the same DNA but must turn ‘“on” and “off”—a process known as gene expression—to create different body parts. The cells in your eyes and arms harbor the same genes but “express” them differently to become each body part.

Liver organoid generates organ-specific blood vessels for the first time

Scientists from Cincinnati Children’s and colleagues based in Japan report achieving a major step forward in organoid technology: producing liver tissue that grows its own internal blood vessels.

This significant advance could lead to new ways to help people living with hemophilia and other coagulation disorders while also taking another step closer to producing transplantable repair tissues for people with damaged livers.

The study, led by Takanori Takebe, MD, Ph.D., director for commercial innovation at the Cincinnati Children’s Center for Stem Cell and Organoid Research and Medicine (CuSTOM), was published in Nature Biomedical Engineering.

New human ‘multi-zonal’ liver organoids improve injury survival in rodents

One reason why our livers excel at clearing waste from our blood system is that the organ functions according to three key “zones” that perform specific major tasks. So, if scientists hope to create self-growing patches of liver organoid tissue that could help repair damaged organs, it’s important that the lab-grown tissue faithfully reproduce such zones.

In a groundbreaking paper published April 16, 2025Nature, a team of organoid medicine experts at Cincinnati Children’s reports achieving just such a milestone—made from . When these humanized organoids were transplanted into rodents whose own liver-bile duct system had been disconnected, the improved organoids nearly doubled the rodents’ survival rate.

“The research community has long needed a better model for studying human liver biology and disease, because there are outstanding hepatocyte diversity and associated functional orchestrations in the human liver that do not exist in rodents,” says Takanori Takebe, MD, Ph.D., the study’s corresponding author. “This new system paves the way for studying, and eventually treating, a wide range of otherwise fatal liver disorders.”

Beyond the crystal: Dynamic model captures loop flexibility in swine virus drug design

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to devastate the global swine industry, yet the structural basis of how small molecules block its entry into host cells remains unclear. Researchers at the University of Tsukuba and Mahidol University developed a refined model of the PRRSV receptor domain CD163-SRCR5 using state-of-the-art computational approaches, offering new avenues for rational drug design.

While traditional drug discovery often relies on static crystal structures, many biologically important proteins, including the scavenger receptor CD163-SRCR5, contain flexible loop regions poorly captured by crystallography. These loops are critical for recognizing and , making them challenging yet attractive drug targets.

In their new study published in The Journal of Physical Chemistry Letters, the researchers used (MD) simulations, ensemble docking, and fragment molecular orbital calculations to generate a dynamic, physiologically relevant structural model of the CD163-SRCR5 domain.

Muscle in Space Sheds Light on Ageing-Related Muscle Loss

Sarcopenia, which is a progressive and extensive decline in muscle mass and strength, is common with aging and estimated to affect up to 50% of people aged 80 and older. It can lead to disability and injuries from falls and is associated with a lower quality of life and an increased mortality. Apart from lifestyle changes, there is no current clinical treatment for sarcopenia.

Space flight with the associated absence of gravity and limited strain on muscles causes muscle weakness, a prominent feature of sarcopenia, within a short period of time, providing a time lapse view on age-related atrophy-associated changes in the muscle. This relatively short window of time in space provides a microgravity model for muscular aging and opens opportunities for studying sarcopenia, which normally takes decades to develop in patients on earth.

To understand the changes of muscle in microgravity, Siobhan Malany, Maddalena Parafati, and their team from the University of Florida, USA, engineered skeletal muscle microtissues from donor biopsies and launched them to the International Space Station (ISS) aboard SpaceX CRS-25. Their findings were published today in Stem Cell Reports. The microtissues were taken from both young, active donors and from aged, sedentary donors and cultured in an automated mini lab, which besides regular feeding and monitoring of cultures also enabled electrical stimulation to simulate exercise. On earth, the contraction strength of microtissues from young, active individuals was almost twice as much as the strength of tissues from older, sedentary individuals. After only two weeks in space, muscle strength trended to decline in the young tissues and was now more comparable to the strength of old tissues. A similar trend was seen for the muscle protein content, which was higher in young microtissues on earth compared to old microtissues but decreased in microgravity to levels measured in old tissues. Further, space flight changed gene expression, particularly in the younger microtissues and disturbed cellular processes related to normal muscle function. Interestingly, electrical stimulation could mitigate these changes in gene expression to some extent.

Two classes of FOXA1 mutations found to drive prostate cancer and therapy resistance

A new study from the University of Michigan Rogel Health Cancer Center, published in Science, sheds light on how two distinct classes of mutations in the FOXA1 gene—commonly altered in prostate cancer—drive tumor initiation formation and therapeutic resistance.

FOXA1, a key transcription factor that facilitates binding to DNA, is mutated in 10–40% of hormone-dependent prostate cancers. While common, the exact ways these mutations alter cancer cells have remained elusive—until now.

Rogel researchers, including Arul Chinnaiyan, M.D., Ph.D., S.P. Hicks Endowed Professor of Pathology and Urology, and Abhijit Parolia, Ph.D., Rogel Fellow and Assistant Professor of Pathology, used mouse models to understand the mechanisms underlying two major classes of FOXA1 mutations.

The ‘mind-bending’ bionic arm powered by AI

I was born without lower arms and legs, so I’ve been around prosthetics of all shapes and sizes for as long as I can remember.

I’ve actively avoided those designed for upper arms for most of my adult life, so have never used a bionic hand before.

But when I visited a company in California, which is seeking to take the technology to the next level, I was intrigued enough to try one out — and the results were, frankly, mind-bending.

Prosthetic limbs have come a long way since the early days when they were fashioned out of wood, tin and leather.

Modern-day replacement arms and legs are made of silicone and carbon fibre, and increasingly they are bionic, meaning they have various electronically controlled moving parts to make them more useful to the user. (Feb 2024)


BBC Click reporter Paul Carter tries out a high-tech prosthetic promising a ‘full range of human motion’