Toggle light / dark theme

Grace LeClair had just finished eating dinner with friends when she got the phone call every parent dreads. The chaplain at the Medical College of Virginia was on the other end. “Your daughter has been in a serious accident. You should come to Richmond right away.” LeClair was in Virginia Beach at the time, a two-hour drive from 20-year-old Bess-Lyn, who was now lying in a coma in a Richmond hospital bed.

The friend who was with Bess-Lyn has since filled in the details of that day in March. The two women were bicycling down a steep hill, headed toward a busy intersection, when Bess-Lyn yelled that her brakes weren’t working and she couldn’t slow down. Her friend screamed for her to turn into an alley just before the intersection. But Bess-Lyn didn’t turn sharply enough and crashed, headfirst, into a concrete wall. She wasn’t wearing a helmet. By the time the ambulance reached the hospital, Bess-Lyn was officially counted among the 1.5 million Americans who will suffer a traumatic brain injury (TBI) this year.

Bess-Lyn’s mom was halfway to Richmond when she received a second call, this time from a doctor. “He was telling me that she had a very serious injury, that she had to have surgery to save her life and that if I would give permission, they would use this experimental, not-approved-by-the-FDA drug,” Grace LeClair recalls. “He said that it would increase the oxygen supply to her brain. To me that only made sense, so I said yes.”

Read more

NASA’s Space Technology Mission Directorate (STMD) worked with two private firms to develop advanced structures for high power solar arrays that are stronger, lighter, and package more compactly for launch. This technology investment furthers the agency’s deep space exploration goals and aids the commercial communications satellite industry, the provider of direct-to-home television, satellite radio, broadband internet and a multitude of other services.

The Roll Out Solar Array (ROSA) is one of the options eyed by NASA that could power an advanced solar electric propulsion spacecraft that makes possible such endeavors as the agency’s Asteroid Redirect Mission—plucking a multi-ton boulder from an asteroid’s surface, and then maneuvering that object into a stable orbit around the moon for human inspection and sampling.

Tapping into ROSA technology allows the conversion of sunlight into electrical power that drives the ion thrusters of a solar electric propulsion spacecraft. ROSA is expected to enable a number of space initiatives and is a cost-saving plus to transport cargo over long distances beyond the Earth.

Read more

Mayo Clinic researchers have developed the first liquid biopsies from blood tests and DNA sequencing that can detect ovarian cancer long before a tumor reappears.

The advance, reported by the Mayo Clinic Center for Individualized Medicine, provides a promising new way to monitor and treat recurrences of ovarian cancer — a hard-to-detect disease that claims many lives.

Lead researcher Dr. George Vasmatzis, Ph.D., of the Department of Laboratory Medicine and Pathology at Mayo Clinic, said the development could lead to earlier intervention and more effective, individualized treatment for the often-fatal condition.

Read more

“Computational design tool transforms flat materials into 3D shapes” — I could use this many times over.


Researchers at Carnegie Mellon University and the Swiss Federal Institute of Technology in Lausanne, Switzerland (EPFL) have developed a new computational design tool can turn a flat sheet of plastic or metal into complex 3D shapes. They say the tool enables designers to fully and creatively exploit an unusual quality of certain materials — the ability to expand uniformly in two dimensions.

In this case, the researchers were making hexagonal cuts into flexible, but not normally stretchable plastic and metal sheets to give them the ability to expand uniformly, up to a point. But the design tool could be useful for a variety of synthetic materials, known as auxetic materials that share this same distinctive quality.

Origami-style folding techniques have already helped produce devices such as cardiac stents, which must be maneuvered into the narrowed artery of a heart patient and then expanded to hold the artery open, and solar arrays that unfold after being launched into space. Auxetic materials could be used in similar ways, while also exploiting their additional capabilities.

Perfecting Synthetic biology — this definitely is advancement forward in the larger Singularity story.


In both higher organisms and bacteria, DNA must be segregated when cells divide, ensuring that the requisite share of duplicated DNA goes into each new cell. While previous studies indicated that bacteria and higher organisms use quite different systems to perform this task, A*STAR researchers have now found a bacterium that uses filaments with key similarities to those in multicellular organisms, including humans.

Robert Robinson from the A*STAR Institute of Molecular and Cell Biology has a long-standing interest in what he calls the “biological machines” that move DNA around when cells divide. He and his co-workers had gleaned from gene sequencing analysis that there was something distinctive about the DNA-moving machinery in the bacterium Bacillus thuringiensis.

Along with an international team of colleagues, the A*STAR researchers used electron microscopy and biochemical analysis to investigate the way small circular strands of DNA called plasmids moved in this bacterium. They identified a novel form of bacterial filament that combines to form tubules with some similarities to the microtubules observed in higher organisms. Bacterial systems previously studied also use protein filaments to move DNA, but they do not share such obvious similarities to those of higher organisms. The new-found similarity in Bacillus thuringiensis is of great interest from an evolutionary perspective as it suggests that evolution has furnished at least some bacteria and with different machineries but similar methods to manipulate DNA.

AI and Quality Control in Genome data are made for each other.


A new study published in The Plant Journal helps to shed light on the transcriptomic differences between different tissues in Arabidopsis, an important model organism, by creating a standardized “atlas” that can automatically annotate samples to include lost metadata such as tissue type. By combining data from over 7000 samples and 200 labs, this work represents a way to leverage the increasing amounts of publically available ‘omics data while improving quality control, to allow for large scale studies and data reuse.

“As more and more ‘omics data are hosted in the public databases, it become increasingly difficult to leverage those data. One big obstacle is the lack of consistent metadata,” says first author and Brookhaven National Laboratory research associate Fei He. “Our study shows that metadata might be detected based on the data itself, opening the door for automatic metadata re-annotation.”

The study focuses on data from microarray analyses, an early high-throughput genetic analysis technique that remains in common use. Such data are often made publically available through tools such as the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO), which over time accumulates vast amounts of information from thousands of studies.

Read more

Beautiful.


Researchers at the University of California San Diego and the Massachusetts Institute of Technology (MIT) have come up with a strategy for using synthetic biology in therapeutics. The approach enables continual production and release of drugs at disease sites in mice while simultaneously limiting the size, over time, of the populations of bacteria engineered to produce the drugs. The findings are published in the July 20 online issue of Nature.

UC San Diego researchers led by Jeff Hasty, a professor of bioengineering and biology, engineered a clinically relevant bacterium to produce and then self-destruct and release the drugs at the site of tumors. The team then transferred the bacterial therapy to their MIT collaborators for testing in an animal model of colorectal metastasis. The design of the therapy represents a culmination of four previous Nature papers from the UC San Diego group that describe the systematic development of engineered genetic clocks and synchronization. Over the years, the researchers have employed a broad approach that spans the scales of synthetic biology.

Why Plants? Part III – Rise of The Plant Machines by Orlando de Lange.

Everyone talks about the rise of the robots. What about the rise of the “Vegetation/ Plant Machines?”


In part 3 of our series on plant synthetic biology, Orlando de Lange (@SeaGreenODL) of The New Leaf blog introduces how synbio approaches are being used to develop novel disease resistant crops, overcoming some of the challenges faced by monoculture farming.

The King’s man