Could an aid in fighting heart disease be waiting on the shelves on your local grocery store? New research suggests you may be in luck.

As if it’s not bad enough that bacteria are increasingly becoming resistant to our best antibiotics – some bugs are even eating the drugs. An international team of scientists has now examined just how the bacteria disarm and consume the antibiotics as food, uncovering new potential ways to fight back against resistance.
Bacteria are evolving resistance to antibiotics at an alarming rate, thanks to overprescription and overuse. If left unchecked, reports suggest that by 2050 the so-called superbugs could be responsible for up to 10 million deaths a year, ushering in a new dark age of medicine where our drugs simply don’t work.
Adding insult to injury, some species of bacteria flaunt their resistance by actually chowing down on antibiotics. New research out of the Washington University School of Medicine in St. Louis has set out to examine just how the bacteria manage to do this.
Deepcric is a deep learning system for cricket. It looks at cricket video and does scene segmentation, scene classification, automatic commentary generation, targeted highlights generation, player identification, and player stats extraction.
Deep learning has been applied everywhere. From imagenet [1] to disease identification [2] to large-scale video classification [3] to text classification [4], there are barely any areas where people have not applied deep learning. But interestingly, there has been very little work in applying data science and deep learning to the game of cricket. This post is a detailed overview of my final year project at the FAST National University. We have developed a deep learning based system that is able to do many tasks in cricket in an automated way. Some of these tasks are:
In a few seconds flat, you’ve gone from a neatly-equipped office to a home cinema…all within the same four walls. Who needs more than one room?
This is the dream of those who work on “programmable matter.”
In his recent book about AI, Max Tegmark makes a distinction between three different levels of computational sophistication for organisms. Life 1.0 is single-celled organisms like bacteria; here, hardware is indistinguishable from software. The behavior of the bacteria is encoded into its DNA; it cannot learn new things.
Not surprising and yet fascinating to actually see — “The researchers found that music activates the brain, causing whole regions to communicate. By listening to the personal soundtrack, the visual network, the salience network, the executive network and the cerebellar and corticocerebellar network pairs all showed significantly higher functional connectivity.”
“Ever get chills listening to a particularly moving piece of music? You can thank the salience network of the brain for that emotional joint. Surprisingly, this region also remains an island of remembrance that is spared from the ravages of Alzheimer’s disease. Researchers at the University of Utah Health are looking to this region of the brain to develop music-based treatments to help alleviate anxiety in patients with dementia. Their research will appear in the April online issue of The Journal of Prevention of Alzheimer’s Disease…
My #transhumanism work in this fun new article on future of sports:
Can bionic limbs and implanted technology make you faster and stronger? Meet biohackers working on the frontier.
Zoltan Istvan has achieved every runner’s fantasy: the ability to run without the hassle of carrying his keys. Thanks to a tiny chip implanted in his hand, Istvan doesn’t have to tie a key onto his laces, tuck it under a rock in the front yard, or find shorts with little zipper pockets built in. Just a wave of the microchip implanted in his hand will unlock the door of his home. The chip doesn’t yet negate the need for a Fitbit, a phone, or a pair of earbuds on long runs, but Istvan says it’s only a matter of time.
A long-time athlete and technology geek, Istvan identifies as a transhumanist: he believes that the transformation of the human body through ever-developing and evolving technologies will improve human life and ultimately lead to immortality.
“Athletes should be able to use drugs and technologies to enable them to be more competitive. To restrict that is to go against the very best of what we can become. If somebody wants to take these risks, they should have the rights to do so in full.”
An investigational drug in clinical trials for rheumatoid arthritis also prevents a common, life-threatening side effect of stem cell transplants, new research shows.
Studying mice, the researchers found the drug prevented what’s known as graft-versus-host disease, a debilitating, sometimes lethal condition that develops when transplanted stem cells attack the body’s own organs or tissues.
About half of patients receiving donor stem cells develop graft-versus-host disease, which can linger for months or years after their transplants. In some cases, patients die not from their cancer but from the complication itself. Current treatments are not effective.
Scientists at Wake Forest Baptist Medical Center and the University of Southern California (USC) have demonstrated the successful implementation of a prosthetic system that uses a person’s own memory patterns to facilitate the brain’s ability to encode and recall memory.
In the pilot study, published in today’s Journal of Neural Engineering, participants’ short-term memory performance showed a 35 to 37 percent improvement over baseline measurements. The research was funded by the U.S. Defense Advanced Research Projects Agency (DARPA).
Jeffrey Tibbetts prepped for implantation and scrubbed in, methodically sudsing up to his elbows, scraping the dirt from under his fingernails and scouring his hands with a rough brush to render his body sterile before donning a pair of beige latex surgical gloves.
Behind him, a twentysomething tea barista in a black baseball cap waited pensively, his left ring finger exposed from under a surgical drape, a tourniquet wrapped tightly around it. For months, an implanted magnet had been uncomfortably bulging out of the side of Zac Shannon’s finger. Tibbetts picked up a scalpel and began cutting, gently scraping away at the flesh until the incision was deep enough to expose the magnet. With the very steady hands of a practiced surgeon, he pulled out the tiny hunk of metal.
Tibbetts plopped another magnet into the finger, sutured it shut, and removed the tourniquet. The small wound began to gush blood.