Toggle light / dark theme

In a small and preliminary clinical trial, Johns Hopkins researchers and their collaborators have shown that an experimental gene therapy that uses viruses to introduce a therapeutic gene into the eye is safe and that it may be effective in preserving the vision of people with wet age-related macular degeneration (AMD). AMD is a leading cause of vision loss in the U.S., affecting an estimated 1.6 million Americans. The disease is marked by growth of abnormal blood vessels that leak fluid into the central portion of the retina called the macula, which we use for reading, driving and recognizing faces.

The study published on May 16 in The Lancet, reports an exciting new approach in which a virus, similar to the common cold, but altered in the lab so that it is unable to cause disease, is used as a carrier for a gene and is injected into the eye. The virus penetrates retinal cells and deposits a gene, which turns the cells into factories for productions of a therapeutic protein, called sFLT01.

The abnormal blood vessels that cause wet AMD grow because patients have increased production of vascular endothelial growth factor (VEGF) in their retinas. Current treatments require injections of proteins directly into the eye that bind and inactivate VEGF, reducing fluid in the macula and improving vision. However, the therapeutic proteins exit the eye over the course of a month, so patients with wet AMD usually need to return to the clinic for more injections every six to eight weeks in order to stave off vision loss. Eye specialists say the burden and discomfort of the regimen is responsible for many patients not getting injections as frequently as they need, causing vision loss.

Read more

In the past few years, artificial intelligence has advanced so quickly that it now seems hardly a month goes by without a newsworthy AI breakthrough. In areas as wide-ranging as speech translation, medical diagnosis, and gameplay, we have seen computers outperform humans in startling ways.

This has sparked a discussion about how AI will impact employment. Some fear that as AI improves, it will supplant workers, creating an ever-growing pool of unemployable humans who cannot compete economically with machines.

This concern, while understandable, is unfounded. In fact, AI will be the greatest job engine the world has ever seen.

Read more

Here, we demonstrated that intradermal administration of clinically relevant vaccines efficiently induces Trm cells specific for tumor-specific and self-antigens that accumulate in vaccinated and non-vaccinated skin. Interestingly, vaccination-induced Trm cells strongly suppress the growth of melanoma, independently of circulating CD8 T cells, and were able to infiltrate melanoma tumors. Therefore, our work highlights the therapeutic potential of vaccination-induced Trm cells to achieve potent protection against skin malignancies.


Memory CD8+ T cell responses have the potential to mediate long-lasting protection against cancers. Resident memory CD8+ T (Trm) cells stably reside in non-lymphoid tissues and mediate superior innate and adaptive immunity against pathogens. Emerging evidence indicates that Trm cells develop in human solid cancers and play a key role in controlling tumor growth. However, the specific contribution of Trm cells to anti-tumor immunity is incompletely understood. Moreover, clinically applicable vaccination strategies that efficiently establish Trm cell responses remain largely unexplored and are expected to strongly protect against tumors. Here we demonstrated that a single intradermal administration of gene- or protein-based vaccines efficiently induces specific Trm cell responses against models of tumor-specific and self-antigens, which accumulated in vaccinated and distant non-vaccinated skin. Vaccination-induced Trm cells were largely resistant to in vivo intravascular staining and antibody-dependent depletion. Intradermal, but not intraperitoneal vaccination, generated memory precursors expressing skin-homing molecules in circulation and Trm cells in skin. Interestingly, vaccination-induced Trm cell responses strongly suppressed the growth of B16F10 melanoma, independently of circulating memory CD8+ T cells, and were able to infiltrate tumors. This work highlights the therapeutic potential of vaccination-induced Trm cell responses to achieve potent protection against skin malignancies.

KEYWORDS: Cancer vaccines, DNA vaccines, intradermal vaccination, melanoma, models of anticancer vaccination, protein vaccines, tissue resident memory CD8+ T cells.

Immunotherapy is emerging as a new form to treat cancer by harnessing the activity of cytotoxic CD8+ T lymphocytes (CTLs) that specifically recognize tumor-associated antigens. Transfusion of autologous tumor-specific CTLs1–4 and blockade of T cell inhibitory receptors5–7 have demonstrated to elicit durable clinical benefit in a significant proportion of patients with melanoma, leukemia, lymphoma and other cancers, who failed to respond to conventional treatments. Vaccination strategies eliciting CTL responses specific for tumor-specific and self-antigens have shown promising results in recent clinical trials.8–10 Long-lasting protective immunity relies on the efficient establishment of long-lived memory CD8+ T cells, which have the potential to eradicate primary and disseminated tumors.11 They have been typically classified in two subsets: effector-memory (Tem) and central-memory (Tcm) CD8+ T cells.

In a new #Stanford study explaining the cellular mechanisms behind cognitive impairment from chemotherapy, scientists have demonstrated that a widely used chemotherapy drug, #methotrexate, causes a complex set of problems in three major cell types within the brain’s white matter. The study also identifies a potential remedy.


In a new study explaining the cellular mechanisms behind cognitive impairment from chemotherapy, scientists have demonstrated that a widely used chemotherapy drug, methotrexate, causes a complex set of problems in three major cell types within the brain’s white matter. The study also identifies a potential remedy.

Read more

Scientists in India have hit out at speakers at a major conference for making irrational claims, including that ancient Hindus invented stem cell research.

Some academics at the annual Indian Science Congress dismissed the findings of Isaac Newton and Albert Einstein.

Hindu mythology and religion-based theories have increasingly become part of the Indian Science Congress agenda.

Read more

The results from a human pilot study that focused on treating idiopathic pulmonary fibrosis with senescent cell-clearing drugs has been published. The drugs target aged and damaged cells, which are thought to be a reason we age and get sick, and remove them from the body.

Senescent cells and aging

As we age, increasing numbers of our cells become dysfunctional, entering into a state known as senescence. Senescent cells no longer divide or support the tissues and organs of which they are part; instead, they secrete a range of harmful inflammatory chemical signals, which are collectively known as the senescence-associated secretory phenotype (SASP).

Read more

  • Genetic testing will be a cornerstone of healthcare in 2019, experts say.
  • There are two ways to do the testing: getting a costly but complete genetic workup through a doctor or opting for a cheaper at-home test like those sold by 23andMe.
  • Clinicians and advocates criticize the at-home approach, which they say prioritizes convenience over privacy and long-term health.
  • But entrepreneurs counter that the at-home approach lets more people access information.
  • Which method will win out, and at what cost?

As millions of Americans sat down to Thanksgiving dinner, the biomedical researcher James Hazel sent out a stark warning about the genetic-testing kits that he surmised would be a hot topic of conversation.

Most of them are neither safe nor private.


  • A group of hospitals have built a nonprofit generic drugmaker called Civica Rx.
  • On Monday, another 12 health systems joined the organization.
  • The hope is to make generic drugs that are in shortage or have artificially high prices based on what hospitals need.

Hospitals have a creative plan to tackle the high price and frequent shortages of generic drugs.

The nonprofit company, dubbed Civica Rx, was first announced in early 2018, and has gained a lot of attention from other hospitals around the US who are interested in being a part of the venture.

Read more

Citizen Science DayWith support from the National Network of Libraries of Medicine, the School for the Future of Innovation in Society at Arizona State University and SciStarter invite libraries to be part of Citizen Science Day on April 13. Now in its third year, Citizen Science Day is expanding to include meetups and events with a special focus on supporting libraries to involve their communities in authentic science projects in need of their help. The signature event this year will be the “Stall Catchers Megathon” by the Human Computation Institute. Complete the registration form to sign up.

Read more